Research Report No. 76
 POPULATION GROWTH ESTIMATION: STUDIES IN METHODOLOGY II SAMPLE DESIGN, ESTIMATION PRGCEDURES AND RELIABILITY OF ESTIMATES

Farhat Yusuf

```
The Research Reports of the Pakistan Institute of
Development Economics are circulated to inform
interested persons with regard to research in progress
at the Institute. These reports may be freely
circulated but they are not to be quoted without the
permission of the author. Work on this manuscript is
still in progress; comments are invited to improve
the final version.
```

1. This is the second of a series of reports on the methodological aspects of the Population Growth Estimation (PGB) Project. In the first report some details of the two systems of data collection, viz the longitudinal registration system (IR) and the cross sectional surveys (CS), were given along with the detailed methodology of the matching procedures used in comparing the LR and CS reports of vital events [6]. The object of this report is to present the sample design, estimation procedures and some measures of reliability of the various demographic parameters estimated from the PGE data.

SAIPLE DESIGN

2. For drawing the PGE sample the universe was defined as the defacto population of the whole geographic area of Pakistan less the Chittagong Hill Tracts District in Bast Pakistan and Frontier Regions and Quetta and Kalat Divisions in West Pakistan. These areas were excluded because of their difficult terrain, very low density of population and certain other field problems [1]. In terms of population the exciuded areas accounted for less than 1 per cent and about 11 per cent of the total population of East and West Pakistan respectively $[1]$
3. The mural areas of the four administrative divisions of Esst Pakistan were treated as 4 strata. Contiguous thanas in each stratum were combined to form groups of about 140,000 population each according to the 1951 Census count. There were 28 such groups in the 4 strata, from which 10 groups were selected randomly (see Appendix Table 1). The selected groups
had a total of 1,423 union councils (U.C.) One U.C. was selected from each group in the sample (see Appendix Taibe 2). From each selected U.C. a contiguous area inhabited by about 5,000 persons was taken as the PGE sample area.
4. The urban areas of the four administrative divisions of East Pakistan were grouped into 2 strata. These strata in all had 58 urban areas. One urban area was selected randomly from each stratum with probability proportional to its population size (see Appendix Table 3). The two selected urban areas (the cities of Mymensingh and Kmina) had 17 union comittees (U.Ct). One U.Ct was selected randomly from each of these cities. From the area under the jurisdiction of the selected U.Ct. a cluster of about 5,000 population was selected as the PGE sample area.
5. The rural areas of the ten administrative divisions of West Pakistan were grouped into 8 strata (see Appendix Tabie 4). Contiguous tehsils in each stratum were combined to form groups of about 800,000 population according to the 1951 Census count. There were 28 such groups, from which 10 were selected rendomly (see Appendjx Table 5). The selected groups had a total of 67 tehsils. One tehsil was randomly selected from each group in the sample. One union council (U.C) was selected from each of the the 10 selected tehsils. Contiguous areas inhabited by about 5,000 persons were selected from each of the 10 selected U.Cs.
6. The urban areas of the ten administrative divisions of West Pakistan were grouped into 2 strata (see Appendix Table 6). These strata had a total of 212 urban areas. One urban area was selected randomly from each stratum with probability of selection
proportional to the population of the area. The 2 selected areas (cities of Rawalpindi and Hyderabad) had 29 Union Committees (U.Ct). One U.Ct was selected randomly from each of these cities. A cluster of about 5,000 population was chosen from each of the selected U.Cts (see Appendix Table 6).
7. Maps and household listings were prepared for each of the 24 sample areas and the field work was started in January 1962. During the field work it was noted that the populetion of half of the sample areas was substantially less then the originally anticipated 5,000 persons (Tebles IA and 1B. Thus in mid 1962 the boundaries of these 12 sample areas were arbitrarily extended so as to bring them at par with the other sample areas.
8. As pointed out in a previous research report $[67$, two systems of data collection (viz. the LR and CS systems) were being used in PGE. In the $I R$ system, full time registrars were stationed in 20 out of the total 24 sample areas (see Tables lí and 1B). The registrars were expected to register all vital events oocuring within the boundaries of their sample areas. In the CS systed specially trained interviewers were sent to enumerate all households in the 20 sample areas, of which 16 areas were common with the IR system. The interviewers were expected to visit each sample area four times a year and to recora information about the household composition and occurence
[^0]TABLE Lh: SOME DEThILS OF THE ELST PhKISThN ShMPLE FOR THE PGE PROJECT

Name of the stratum (Division)	Stratum number	Estimated mid 1962 population of the stratum*	Name of the sample area	Area code	System of data collection used	Type of area	Mid 1962 population of the sample area before after exten- exten- sion sion

FAST PAKISTAN

*tstimated by inflating the 1961 Census population by a growth rate of 2.6 percent per annum. H-Strata 5 and 6 were the urban strata.

TABLE 1B: SOMP DFTAILS OF THF WEST PAKISTAN SAMPLF FOR THE PGE PROJFCT

Name of the stratum (Division)	Stratum number	Fstimated mid 1962 population of the stratum*	Name of the sample area	Area code	System of data collection used	Type of area	Mid 196 populat of the area before extension	```2 ion sample after exten- sion```
WEST PAKISTAN								
Peshawar and								
D.I.Khan	1	3,526,762	Karak	200	LR and CS	Rural	5,150	5,150
Rawalpindi	2	3,343,102	Simbli	211	LR and CS	Rural	4,500	4,500
Lahore	3	4,408,781	Bhedian	222	LR and CS	Rural	6,350	6,350
Multan	4	5,829,648	lıliwah	233	LR and CS	Rural	4,150	4,950
Bahawalpur	5	2,301,120	Ramma	244	LR and CS	Rural	5,250	5,250
Hyderabad and Karachi.	6	2,860,545	Khudadad	255	LR and CS	Rural	4,900	4,900
Sargodha	7	4,987,087	Mocch	266	LR only	Rural	2,350	4,050
			82/G.B.	269	CS only	Rural	4,100	4,100
Khairpur	8	2,728,610	Wazirabad Laghari	277 278	LR only	Rural Rural	3,100 3,900	5,000 5,100
Peshawar, D. I. Khan,								
Rawalpindi, Lahore,								
Multan and Sargodha Bahawalpur Khairpur		6,084,062	Rawalpindi	280	LR and CS	Uriban	2,800	4,750
Hyderabad and Karachi	10^{+}	3,666,405	Hyderabad	291	LR and CS	Urban	4,150	6,450

* Estimated by inflating the 1961 Census population by a growth rate of 2.6 percent per annum.
of vital events during the 12 months prior to the interview. The vital events data collected through the LR and CS systems were coded and punched on IBM cards. The LR and CS vital events' cards for the 16 common areas were then matched by using an elaborate matching procedure. As a result of matching, all the vital events ${ }^{r}$ cards from the 16 common areas were divided into the following three categories:
i) the matched vital events' cards i.e. cards for events reported by both the $L R$ and CS systems,
ii) the non matched LR vital events cards, i.e. cards for events reported by the LR but not the CS system, and
iii) the non matched CS vital events cards, i.e. cards for events reported by the CS but not the IR system.

In addition to these there were two more categories of vital events cards:
iv) IR vital event's cards for the 4 LR only areas, and
v) CS vital event's cards for the 4 CSS only areas.

From these five categories three decks of vital events cards, namely the LR, CS and $A N$ decks, were prepared. The IR deck consisted of cards in categories (i), (ii) and (iv), the CS deck consisted of cards in categories (i), (iii) and (v), and the lN deck consisted of cards in all the five categories.

1. For methodological details of PGE see $[1,5 \bar{m}$.
2. For details of the matching procedures see [6].

It may be noted that both the LR and CS decks consisted of Vital events! cards for 20 smple areas each, while the in deck contained the vital events' cards for all the 24 sample areas. For the base population only one deck of cerds, namely the PC deck, was prepared which consisted of the base population cards for the 20 CS areas, as these data were collected only through the CS system. Thus, in all we had four decks of data cards for each year from which we had to derive the provincial and national estimates for births, deaths and mid year populations.

ESTIMLION PROCEDURES

9. Although the PGE sample was selected through multistage stratified sempling procedure, for estimation purposes it was assumed that each stratum was divided into clusters of about 5,000 population, from which one, two or more clusters were selected randomly. On this basis the raising factors for each sample area were computed by using the formula P / n. p where P was the estimeted mid 1962 population of the stratum, n wes the number of clusters (i.e. sample areas) selected from the stratum and p was the population of the semple area for which the raising factor was being computed.
10. Whenever there was a need to adjust the total number of vital events, for example to account for events missed by both the $L R$ and CS systems, the raising factors were adjusted in the
11. It may be noted that figures for p given in the last two columns of Tables 14 and $I B$ are not the enumerated mid 1962 populations but are some sort of a compromise between various population estimates for the sample areas.
following manner. Let Y_{1} be the total number or events reported in a sample area, Y_{2} be the estinated number of events missed on some account and R be the raising factor for that area. Obviously $Y_{1}+Y_{2}$ was the adjusted total of vitel events. At this stage we had two alternatives:
i) to multiply $Y_{1}+Y_{2}$ by R to get the sample estimate, and
ii) to adjust the raising factor R by multiplying it with $\left(Y_{1}+Y_{2}\right) /\left(Y_{1}\right)$ and then to multiply the adjusted raising factor by Y_{I} 。

To facititate the processing of PGE deta it was decided to adopt the second method, since by this method adjustments were made only in the raising factors and not in the number of vital events cerds. However, algebraically both methods will yield identical results.

PC Decks of Base Population

11. Raising factors for the 20 CS areas from which the base population statistics were collected are presented in Table 2. These have been computed by using the formula given in para 9. While calculating these raising factors, p was taken as the estimated mid 1962 population of the sample areas after the extension of their boundaries. These raising factors were gang punched on the PC decks for all the 4 years (viz. 1962-1965) of PGE operations.

TABLB 2: RAISING FACTORS FOR THE PC DECKS OF BASE POPULATION Provinco/irc? Raising factors for 1962-1965

EhST PAKISTM

$110 \quad 1295$
$111 \quad 1071$
122935
123 1064
134 1260
1351338
148 1447
1491447
$150 \quad 305$
161 175
WEST PLAKIST:II
$200 \quad 685$
211 7.43
222694
2331178
244 438
$255 \quad 584$
$269 \quad 1216$
278 535
2801281
$291 \quad 568$

IR Decis of Vital Events

12. Since the boundaries of certein sample areas were extended in mid 1962, two sets of raising factors were prepared for the 20 LR areas from which the IR vital events statistics were collected (Table 3). The first set was computed by taking in denoninator the estimated mid 1962 population of the sample areas before extension (given in last but one column of Table 1) while in the second set the population after extension (given in the last column of Table 1) were used. The first set of raising factors wes gang punched on the LR cards for vitel events which occurred between 1 January and 30 June 1962 while the second set was gang punched on the $L R$ vital events' cards for the remaning $3 \frac{1}{8}$ years.

TABIE 3: RGISING FACTORS FOR THE LR DECKS OF VITAL IVENTS

Province/hrea	

HAST PAKISTAN

110	1437	1295
111	1071	1071
122	935	935
123	1064	1064
134	1490	1260
135	1338	1338
146	1622	1622
147	2952	2306
150	487	305
161	193	175

TEST PAKISTAN

200	685	685
211	743	743
222	694	694
233	1405	1178
244	438	438
255	584	584
266	2122	1231
277	880	546
280	2173	1281
291	883	568

CS Decks of Vital EVents

13. As pointed out in [6], the reference period for obtaining the vital events in the CS enumeration visits was twelve months prior to the interview instead of a calendar year. Thus, for cxample, an interviewer visiting a sample area on 29 Jenuary 1963 was not expected to enumerate events which occurred between I and 28 Januery 1962 (say P_{1} events), but was required to report events occurring during the period 1-29 Janunry 1963 (say P_{2} events). hs the CS deck for 1962 contained only those events which occurred during 1962 and were reported in the

T\&BLE 4: RAISING F\&CTORS FOR THE CS DECKS OF VITAL EVENTS

Province/Area	Births				Deaths			
	1962	1963	1964	1965	1962	1963	1964	1965
EAST PhKISTAN								
110	1353	1379	1295	1370	1321	1408	1295	1406
111	1071	1207	1071	1185	1071	1290	1071	1220
122	970	1000	935	1007	992	969	935	- 984
123	1401	1255	1064	1118	1234	1089	1064	1241
134	1288	1365	1260	1334	1359	1366	1260	1432
135	1391	1458	1338	1390	1404	1401	1338	1388
148	1502	1638	1447	1567	1545	1667	1447	1554
149	. 1514	1573	1447	1479	1547	1550	1447	1486
161	342	333	305	317	353	329	305	314
	188	184	175	176	193	184	175	180
WEST PAKISTAN								
200	723	755	685	727	712	712	685	724
211	774	794	743	762	812	838	743	807
222	705	750	694	740	704	725	694	771
233 244	1216 469	1218 459	1178	1255 448	1245	1228	1178	1365
255	601	604	584	593	659	473 667	438	454
269	1264	1318	1216	1232	1317	1415	1216	1278
278	618	596	535	574	963	555	535	544
280	1336	1406	1281	1340	1312	1452	1281	1405
291	598	596	568	635	792	568	568	591

January 1963 enumeration visit (say K events), the deck for the calendar year was short of number of events equal to P_{1}. To overcome this problem it was assumed that the number of P_{1} events was equal to the number of P_{2} events. Thus, following the reasoning given in para No. 10 , the CS raising factors for each year were adjusted by multiplying them with a ratio $\left(K+P_{2}\right) / K_{0}$ These ratios were computed separately for birthe and deaths for each yenr and for each area. The adjusted raising fectors given in Table 4 were gang punched on the relevnt decks of CS vital events cards.

HN Decks of Vital Bvents
24. The AN decks of vitel events consisted of matched, non matched $L R$ and non matched CS evente from the 16 LRmCS common arens along with the $L R$ events from the $4 L R$ only and the CS 3 events from the 4 CS only areas. The basic raising factors for

1. Assuming thet these events had the same match retes as the rest of the events in the 16 LR-CS common areas, 75 percent of P_{2} events were added to the CS matched cotegory and 25 percent to the CS non matched category. Since the number of $I R$ and CS matches must be equal, 75 percent of P_{2} events were tiansiferred from the LR non matches to the matehed category. This resulted in the diminution oi the IR non matches. However, the total IR events (i.e. matched plus non matched) were not affected by this adjustinent.
2. Matching in 1964 was done in such a manner that there was no need to make this adjustment, see $\angle 67$.
3. The procedure for estimating the number of matched and non matched events in LR only and CS only areas is explained in para No. 18.

TABLE 5: BASIC RAISING FACTORS FOR THE AN DECKS OF VITAL EVENTS
Province/Area. Raising factors Stratun number

FAST PGKISTiN

110
111
122
123
134
135
146
147
148
149
150
161
WEST PAKISTAN

200	684.8	
211	742.9	1
222	694.3	2
233	1177.7	3
244	438.3	4
255	583.8	5
266	615.7	6
269	608.2	7
277	272.9	7
278	267.5	8
280	1280.9	8
291	568.4	9
		10

the 24 sample areas presented in Table 5 were adjusted to account for:
i) the vital events not registered during the first half of 1962 in that portion of the sample that was first covered in July 1962,
ii) the vitel events not enumerated because time reference of the CS surveys did not correspond exactly to one calendar year,
iii) the assumed excess of false non matches over matched events, and
iv) the vital events missed by both the LR and CS systems.

The procedural details of the adjustment of the raising factors ror the 24 sample areas are given in the following paragraphs. 15. Let us consider a sample area in which both the IR and CS systems were operating. On the basis of matching the vital events reports we were able to classify the $I R$ and CS vital events into:
C = matched events
$R=$ non matched $I R$ events, and
$E=$ non matched CS events.

This means that the $A N$ deck consisted of $C+R+\mathbb{E}$ events of which $C+R$ were the LP events while $C+E$ were the $C S$ events. Further, iet us suppose that we have also estimated the following cetegories of events:

$$
A=\text { events missed by the } I R \text { system during the first }
$$

half of 1962 in thet portion of the ${ }_{1}$ sample area that was first covered in July 1962,
$A_{1}=$ matched events among A_{3},
$A_{2}=$ non matched $L R$ events among A,
$B=$ events missed by the CS system because time reference, did not correspond exactly to a
calendar year,
$B_{1}=$ assumed matched events among $B=75$ percent of B
$B_{2}=$ assumed non matched $C S$ events among $B=25$ percent of B, and
$D=$ assumed excess of non matched events to be transferred from the non matched $I R$ and CS categories (viz R and E) to the matched category (viz C). 3
16. After making the first three adjustments given in para I4, $\left(A_{1}+B_{1}+D\right)$ events were added to the category C, while ($\left.A_{2}-B_{1}-D\right)$ were added to R and $\left(A_{1}-B_{2}+D\right)$ events were substracted from the category E. From these data the number of events missed by both the $L R$ and CS systems was calculated by the expression ${ }^{4}$

$$
M=\frac{\left(R+A_{2}-B_{1}-D\right)\left(E-A_{1}+B_{2}-D\right)}{\left(C+A_{1}+B_{1}+D\right)}
$$

1. These events were estimated in the following maner. Suppose if a sample area had a population of 4213 persons and after extension of its boundaries in mid 1962 it increased to 5010 persons, that is, an increase of about 25 per cent. This means that had the boundaries been extended on I January 1962 instead P July 1962 we would have registered 0.25 (C+R) more events. Thus, A_{1} was equal to $0.25 C$ and A_{2} was equal to 0.25R. Since thi" adjustment did not affect the total CS events viz. $(C+E)$, we had to decrease E by A_{1} so as to keep $(C+\mathbb{E})$ unaffected. For more details of this adjustment see [6_/ para 20.
2. For details of this adjustment see para 13 of this report and particularly the footnote 1 on page 12.
3. This assumption was made on the basis of office and field investigation of non matched events. D was estimated by taking 5 per cent of the IR or CS non matches (which ever were less) and this number was transferred from both R and E to the category C. Thus, as a result of this adjustment the iN deck became: (C+D)+(R-D)+ (E - $)^{\text {. }}$
4. This was the Chandra-Deming adjustment, see $[2,5]$.

It is evident that the $C+R+\mathbb{L}$ reported events after making all the four acjustments (listed in para 14) became K events, where:

$$
K=\left(C+\hat{A}_{1}+B_{1}+D\right) \quad\left(R+\hat{A}_{2}-B_{1}-D\right)+\left(E-A_{1}+B_{2}-D\right)+(M)
$$

Thus, instead of increasing the total number of cards of the vital events in the $A N$ decks from $C+R+E$ to K we in turn inflated the relevant raising factors (presented in Table 5) by the ratio $I=K /(C+R+\mathbb{E})$, and gang punched the adjusted raising factors on the relevant vital events' cards. This procedure was adopted in all the 16 LR-CS common areas and for all years except for the 7 LR-CS areas whose boundaries were extended in mid 1962. The adjustment procedure for the 7 IR-CS areas whose boundaries were extended in mid 1962 are presented in the following paragreph. It may be noted that while computing K, the values of Aland A_{2} were taken as zero for vital events for the 9 LR-CS areas whose boundaries were not extended in mid 1962 and for the 1963 and 1965 vital events for all the 16 IRmCS areas, because the first adjustment was not applicable to these vital events. Similarly the values of A_{1}, A_{2}, B_{1} and B_{2} were taken as zero for the 1964 vital events, as both the first and second adjustments were not applicable to them.
17. As pointed out earlier, the boundaries of half of the sample areas were extended in mid 1962. Thus, it was only in the 1962 vital events data for these areas where we had to make the first adjustment listed in para 14. For this purpose the 1962 vital events for each area were divided into two parts, one containing the events during the first half of 1962 and the other consisting of vital events which occurred during the second half of 1962. Let us suppose the number of matched
and non matched events were:

$=$ matched events,	se were
$\mathrm{R}_{1}=$ non matched $I R$ events;	which occurred between I January and 30 June 196
$\mathbb{E}_{1}=$ non matched CS events,	
$\mathrm{c}_{2}=$ matched events,	These were the events which occurred between
$\mathrm{R}_{2}=$ non matched In events,	1 July and 31 December 19625
$\mathbb{W}_{2}=$ non matched CS events,	

Since we had estimated that during the first six months of 1962 the $L R$ system would have registered A more events (or which A_{1} would have matched and Λ_{2} non matched), had the boundaries been extended on 1 January instead of 1 July 1962, thus, the matched events C_{1} became ($C_{I}+A_{1}$ ", the non matched LR events became $\left(R_{1}+A_{2}\right)$ and the non matched CS events became ($\left.E_{1}-A\right)_{1}^{l}$. Thus, as a result of the first adjustment the totol vital events reported during the first sik months of 1962 had to be increased by a ratio K_{1} which was equal to $\left[\left(C_{1}+A_{1}\right)+\left(R_{1}+A_{2}\right)+\left(E_{1}-A_{1}\right)\right.$ $\left(C_{1}+R_{1}+E_{1}\right)$. We then took the vital events for the second six months of 1962 and added them to the adjusted vital events for the first six months of 1962. Thus, we got K_{2} which was equal to $\left(C_{1}+A_{1}\right)+\left(R_{1}+A_{2}\right)+\left(E_{1}-A_{1}\right)+\left(C_{2}+R_{2}+E_{2}\right)$. These K_{2} events were the total events after the first adjustment. It may be recalled. irom paral6 that K was the total events in which all the four adjustments had been incorporated. This means that as a result of the second, third and fourth adjustments the total vital events after first adjustment had to be increased by a ratio K_{3} which was equal to K / K_{2}. Thus, the basic raising factors for

1. We substracted A_{1} events from E_{\top} so as to keep the number of matchod and non matched $C S$ events equal to $C_{I}+E_{1}$.

1962 for each area were multiplied by K_{1} for that area to adjust them for the extension of boundaries and were again multiplied by K_{3} for that area to incorporate the effect of the remaining three adjustments. The finally adjusted raising factors were gang punched on the vital events' cards for the first six months of 1962. Since the extension of boundaries did not affect the LR events for the last six months of 1962 , the raising factors for each area were multiplied only by \mathbb{K}_{3} for that area (which incorporated only the last three adjustments) and the adjusted raising factors were gang punched on the vital events cards for the second half of 1962.
18. As pointed out earlier there were 8 areas (4LR and 4CS) in which only one of the two systems of data collection were operating. Our problem was to compute the Chandra-Deming estimate of vital events for these areas. For this purpose two factors F_{1} and F_{2} were computed for each of the 12 rural LR-CS common areas. The factors F_{1} and F_{2} were in fact the ratios $F_{1}=K /(C+R)$ and $F_{2}=K /(C+E)$ where K was the Chandra-Deming estimate of vital events, ($C+R$) was the total $L R$ events actually registered and $(C+E)$ was the $C S$ events enumerated in the field. These ratios were averaged separately for East and West Pakistan for each year to get Z_{1} and Z_{2}. The raising factors for the 4 LR only areas were then multiplied by Z_{1} and those for the 4 CS only areas were multiplied by Z_{2} and the adjusted raising factors were gang punched on the relevant vital events' cards. Since the bounderies of the 3 out of the 4 LR only areas were extended in mid 1962 the raising factors for these areas were adjusted by a modified procedure presented in the next paragraph.
19. Let us suppose that the 3 LR only areas whose bounderies were extended had:

$$
\begin{aligned}
T= & \text { total } I R \text { events registered during } 1962, \\
T_{1}= & \text { total } L R \text { events registered during the first } \\
& \text { half of } 1962, \\
T_{2}= & \text { total } I R \text { events registered during the second } \\
& \text { half of } 1962 \text { and } \\
A= & \text { events missed by the } L R \text { system during the first } \\
& \text { half of } 1962 \text { in that portion of the sample area } \\
& \text { that was first covered in July } 1962 .
\end{aligned}
$$

Obviously $T_{1}+A$ represented the expected number of vital events, had the boundaries been extended from 1 January 1962 instead of July 1962, and hence the ratio $N=\left(T_{1}+A\right) / T_{1}$ gave us the adjustment factor which accounted for only the boundary extensions. Further, another factor $M=\left(T, Z_{1}\right) /(T+A)$ was calculated. In this factor as $T . Z_{1}$ gave us the ChandramDeming estimate of T and $T+\mathbb{A}$ gave us the estimated T after making the boundary adjustments, so M was in fact the ratio which incorporated all the adjustments except that due to the extension of boundaries. Thus, we gang punched raising factors adjusted by the product of M times N on the first half of 1962 vital events' cards of the three areas whose boundaries were extended in mid 1962. As the problem of boundaries extension was not applicable to the second half of 1962, the raising factors were multiplied by M and were geng punched on the relevant vital events' cards for the second half of 1962.
20. Table 6 presents the adjusted raising factors for the $A N$ decks of vital events.
21. The raising factors presented in Tables 2, 3, 4 and 6 were gang punched on the relevant decks and the sample figures

TABLE 6: ADJUSTED RAISING F\%CTORS FOR THE AN DECKS OF VITML EVENTS

were inflated to arrive at the LR, CS and Chandra-Deming provincial and national estimates.

RELIABILITY OF ESTIMATES

22. The provincial and national estimates derived froin the PGF data were obviously subject to sampling and non sampling errors. Since some of the important non sampling errors and their probable effects have been described elsewhere $[5]$ in this section we will limit ourselves to the procedures used for the computation of some measures of reliability for the various demographic parameters estimated from the PGE data.
23. As pointed out in para 9, for calculating the raising factors it was assumed that the PCE sample areas were selected through a one stage instead of the multistage stratified sampling procedure. Similarly, the measures of reliability presented in this report were also computed under the same assumption. Since we needed at least two sample areas per stratum in order to compute within stratum variances, we had to collapse the 6 strata in East and 10 in West Pakistan into 5 domains in each province (Table 7).
24. Standard errors (SE) and coefficients of variation (CV) are the two measures of reliability presented in this report. \widehat{Y}, the provincial total for a particular characteristic was obtained as the sum of the products of total of the same characteristic for the sample areas by their relevant raising factors. The standard error of \hat{Y} was calculated

TGBLE 7: COMPOSITION OF DOMANS IN EAST IND WEST PAKISTAN
Province/Domain Stratum Sample areas in the

EAST PaKISTAN

1	1	
2	2	110,111
3	3	122,123
4	4	134,135
5	5	and
		$150,147,148,149$

WEST PinKISTAM

1	1	and 2	200,211
2	3	and 7	$222,266,269$
3	4	and 5	233,244
4	6	and 8	$255,277,278$
5	9	and 10	280,291

Note: 1. areas $146,147,266,277$ were IR and $148,149,269$, 278 were CS only areas.
2. The domains were formed taking into account the geographical contiguity of the strata.

1
by the following formula:

$$
\operatorname{SE}(\hat{Y})=\sqrt{\sum_{h=1}^{h=5} M_{h}\left(M_{h}-m_{h}\right)} \frac{m_{h}}{M_{h}} \cdot s_{h}^{2}
$$

where M_{h} was the total number of clusters of 5,000 population in the $h^{t h}$ domain, m_{h} was the number of clusters (sample areas) selected from the $h^{\text {th }}$ domain, and s_{h}^{2} was calculated by the formula:

$$
s_{h}^{2}=\frac{\sum_{i=1}^{i=m_{h}}\left(y_{h i}-\bar{y}_{h}\right)^{B}}{m_{h}-1}
$$

I. For details of formulae presented in this paragraph see $\overline{3}, \underline{4} /$.
2. It may be noted that 5,000 perscns was the approximate population of each sample area.

In the above formula, $y_{h i}$ was the total for the characteristic In the $i^{\text {th }}$ sample area of the $h^{\text {th }}$ domain and $\bar{y}_{h}=\sum_{i=1}^{i=m_{h}} \bar{y}_{h i} / m_{h}$. The relative variance (which is the same thing as the square of coefficient of variation) of a ratio \hat{R} of provincial totals \hat{X} and \hat{Y} (where $\hat{R}=\hat{X} / \hat{Y}$) of two population characteristics was calculated by the following formula.

$$
\begin{aligned}
& \text { Relative variance of } \mathrm{R}=-\frac{1}{\hat{\mathrm{x}}^{2}} \sum_{h=1}^{h=5} \frac{M_{h}\left(M_{h}-m_{h}\right)}{m_{h}} \cdot s_{h}^{2} \text {, where } \\
& s_{h}^{2} \equiv \sum_{i=1}^{i=m_{h}}\left[\frac{\left(x_{h i}-\bar{x}_{h}\right)^{2}}{m_{h}-1}+\frac{\hat{\mathrm{R}}^{2}\left(y_{h i}-\bar{y}_{h}\right)^{2}}{m_{h}-1}-\frac{2 \hat{R}\left(x_{h i}-x_{h}\right)\left(y_{h i}-\stackrel{\rightharpoonup}{y_{h}}\right)}{m_{h}-1}\right]
\end{aligned}
$$

In case of the LR and CS estimates where each domain consisted of two sample areas, s_{h}^{2} was calculated as:

$$
s_{h}^{2}=\left(x_{h 1}-x_{h 2}\right)^{2}+\hat{R}^{2}\left(y_{h 1}-y_{h 2}\right)^{2}-2 \hat{R}\left(x_{h 1}-x_{h 2}\right) \cdot\left(y_{h 1}-y_{h 2}\right),
$$

where $x_{h I}$ and $y_{h I}$ were the sample totals for two characterastics in one sample area of the $h^{t h}$ domain and $x_{h 2}$ and $y_{h 2}$ were their counterparts from the second sample area of the $h^{\text {th }}$ domain. The coefficient of variation for the estimate of any parameter was calculated by dividing the standard error for that parameter by the estimate of the parameter.
25. Tables 8 through 10 give: the stendard errors and coefficients of variation for various demographic characteristics of East and West Pakistan derived from the 1964 and 1965 PGE data. The estimates presented in these tables were computed on an IBM 1401 computer.

TABLE 8: MESSURES OF RELIABILITY FOR V\&RIOUS DMOGR PAHIC PARMETERS: PGE 1964-1965

Parameter	Year/Province	Registration			Survey			Chandra Deming		
		Estima	CV	SE	Estimate	CV	SE	Estimat	CV	SE
Total defacto births	1964 East Pakistan	2,374	. 09521	226	2,403	. 09489	228	2,747	. 06137	169
	1964 West Pakistan	1,717	. 11595	199	1,780	. 15132	269	2,333	. 07925	185
	1965 East Pakistan	2,299	. 07235	166	2,132	. 05189	111.	2,795	.04335	122
	1965 West Pakistan	1,694	. 15529	263	1,594	. 10062	160	2,155	. 69272	178
Total defacto deaths	1964 East Pakistan	959	. 03659	35	017	. 05651	52	1,153	. 05507	63
	1964 West Pakistan	630	. 11543	73	532	. 10842	58	327	. 06264	52
	1965 East Pakistian	891	. 07501	67	583	.15869	93	1,143	. 05262	60
	1965 West Pakistan	540	. 14061	76	376	. 11214	42	708	. 09014	64
Total defacto population	1964 Fast Pakistan	\cdots	-	-	55,314	. 03417	1,890	-	-	-
	1964 West Pakistan	-	- -	-	42,390	. 06105	2,588	\cdots	-	-
	1965 Fast Pakistan	-	-	\square	56,839	.03534	2,009	\cdots	-	-
	1965 West Pakistan	-	-	-	43,605	.06221	2,713	\cdots	-	-
Totel dejure	1965 Fast Pakistan	-	-	-	2,214	.05093	113	-	-	-
births	1965 West Pakistan	--	\cdots	-	1,723	.09576	165	-	\cdots	-
Total dejure deaths	1965 East Pakistan	-	-	-	605	. 15570	94	-	-	-
	1965 West Pakistan	-	-	-	405	.11162	45	-	-	-
Total dejure population	1965 East Pakistan	-	-	-	50,573	.03447	$\begin{aligned} & 1,950 \\ & 1,392 \end{aligned}$	-	-	-
	1965 West Pakistan	-	-	-	43,619	.03192	$1,392$	-	"	-

* The figures given in the Estimate and SE columns are expressed in thousands.
** $C V$ stands for coefficient of variation and $S E$ for the standard error.

Parameter	Year/Province	Registration			Survey			Chandra Deming		
		Estimate	$C V^{1}$	SE^{2}	Estimate	CV ${ }^{1}$	SE^{2}	Estimate	CV^{1}	SE^{2}
$\begin{aligned} & \text { Defacto crude birth } \\ & \text { rate } \because \end{aligned}$	1964 Fast Pakistan	. 042951	. 08485	:003644	. 043293	.04472	. 001936	. 049562	. 042720	.002117
	1964 West Pakistan	. 039284	. 09165	.003600	. 040988	. 07549	. 003094	. 054981	. 054534	. 002998
	1965 East Pakistan	. 040467	. 05099	:002063	. 035391	. 07000	. 002477	. 049227	. 031177	. 001535
	1965 West Pakistan	. 038317	. 06324	. 002423	. 034759	. 07348	. 002554	. 049412	. 056285	.002781
Defacto crude death rate	1964 East Pakistan	. 017406	. 06782	. 0001180	. 016575	. 07746	. 001284	. 020900	. 082795	. 001730
	1964 West Pakistan	. 014319	. 10392	.001488	. 011905	. 12409	. 001477	. 019194	. 072877	. 001399
	19.65 East Pakistan	.015712	. 09643	:001515	.009493	. 19390	. 001841	.020159	. 079051	. 001594
	1965 West Pakistan	.012119	. 11090	. 001344	. 008005	. 07483	. 000599	.016209	. 061976	. 001005
Dejure crude birthrate	1.965 East Pakistan	. -	-	-	. 036914	. 05744	. 002120	-	-	-
	1965 West Pakistan	-	-	-	. 037694	. 04899	.001847	--	-	-
Dejure crude death rate	1965^{\prime} East Pakistan	-	-	-	.009887	$.19000$		-	-	-
	1965 West Pakistan	-	-	-	.008576	$.08366$	$.000717$	-	-	-
Fiertility rate for women aged 15-19. years	1964 East Pakistan	. 235658	. 08062	. 018999	. 215045	. 06000	. 012903	.276856	. 050210	. 013901
	1964 West Pakistan	.111967	. 18574	. 020797	. 081652	. 14933	. 012193	.138294	. 156863	. 021693
	1965 East Pakistan	. 217209	. 05477	:011897	. 186830	. 06782	. 012671	. 264692	. 051798	. 013711
	1965 West Pakistan	.089292	. 13928	.012437	.060617	. 25961	. 015737	.106117	. 122752	. 013026
Fertility rate for women aged 20-24. years	1964 East Pakistan	. 303104	. 11958	.036245	. 283076	. 05656	. 016011	. 355103	. 065437	. 023237
	1964 West Pakistan	. 236949	. 11789	.027934	. 253774	. 08944	. 022698	. .338724	. 066903	$.022662$
	1965 East Pakistan	. 2826882	. 02000	. 005654	. 219520	. 09899	. 021730	. 346606	. 034971	. 012121
	1965 West Pakistan	.187755	. 10770	. 020221	.211218	. 08306	. 017544	. 257032	. 092054	. 023661

1. Coefficient of variation
2. Standard error

TABLE 9 (CONTINED)

Parameter	Year/Province	Registration			Survey			Chandra Deming		
		Estimate	CV	SE	Estimate	CV	SE	Estimate	CV	SE
Fertility rate for women aged 25-29 years	1964 East Pakistan	.315618	. 09110	. 028753	.261671	. 07000	. 018317	.343817	. 096778	. 033274
	1964 West Pakistan	. 280665	. 06782	. 019035	. 281979	. 08602	. 024256	. 380774	. 061033	. 023240
	1965 East Pakistan	. 290795	. 03162	. 009195	. 225468	. 03741	. 008435	. 364409	. 086695	. 031592
	1965 West Pakistan	. 272981	. 08544	. 023323	.238676	. 08544	. 020392	. 354753	. 067713	. 024021
Fertility rate for women aged 30-34 years	1964 Tast Pakistan	. 185643	.11874	. 022043	. 244444	. 10630	. 025984	. 219847	. 081123	. 017835
	1964 West Pakistan	. 2669620	. 10816	. 029162	. 255493	. 10000	. 025549	. 362247	. 076217	. 027609
	1965 East Pakistan	. 208381	. 07810	. 016275	. 194616	. 07141	. 013898	. 249218	.071421	. 017799
	1965 West Pakistan	. 292773	. 12806	. 037493	. 247109	. 12165	. 030061	. 362986	. 119892	. 043519
Fertility rate for women aged 35-39 years	1964 East Pakistan	. 138004	. 19026	. 026257	.161042	. 12530	. 020179	. 158731	.094884	. 015061
	1964 West Pakistan	. 159546	. 15874	. 025326	. 197039	. 07211	. 014208	. 242969	. 069678	. 016930
	1965 East Pakistan	. 100034	. 22956	.022964	. 126928	. 09380	. 011906	. 123563	. 149362	. 018456
	1965 West Pakistan	. 204154	. 08366	. 017080	. 169539	. 08544	. 014485	. 258163	. 051147	. 013204
Fertility rate for women aged 40-44 years.	1964 East Pakistan	. 046581	. 33708	. 015702	. 084122	.18275	. 015373	. 060372	. 156480	.009447
	1964. West Pakistan	. 057086	. 24269	. 013854	. 106498	. 13892	. 014795	. 105965	. 094795	. 010045
	1965 East Pakistan	. 048830	. 46881	. 022882	. 054930	.35707	. 019614	. 049788	. 272255	. 013555
	1965 West Pakistan	. 085506	. 13784	. 011786	. 076574	. 10583	. 008104	. 112779	. 111369	. 012560
Fertility rate for women aged 45-49 years	1964 East Pakistan	. 007395	. 46889	. 003467	. 042914	. 31192	. 013386	. 013658	. 1847713	. 002523
	1964 West Pakistan	. 052718	. 33180	. 017492	. 091966	. 18681	. 017180	. 0877742	. 219477	. 019257
	1965 East Pakistan	. 010754	. 56262	. 006050	. 049415	. 61704	. 030180	. 015101	.491912	. 007428
	1965 West Pakistan	. 035077	. 40427	. 014181	. 059833	. 19493	. 011663	. 049847	. 166514	. 008300
Infant mortality rate for both sexes	1964 East Pakistan	. 135129	. 08062	. 010894	. 143114	. 09273	. 013271	. 166008	. 078294	. 012997
	1964 West Pakistan	. 138470	. 09000	. 012462	. 110136	. 11916	. 013124	. 149625	. 076942	. 011512
	1965 East Pakistan	. 140343	. 10392	. 014584	. 097186	. 18220	. 017707	. 176975	. 108844	. 019263
	1965 West Pakistan	.114423	. 11090	. 012690	. 076288	. 08306	. 006336	.128160	. 076046	. 009746

TABIE 9 (CONINUED)

Parameter	Year/Province	Registration			Survey			Chandra Deming		
		Estimate	C, V	SE	Estimate	CV	SE	Estimate	CV	SE
Infant mortality rate for male babies	1964 East Pakistan	. 160405	. 07483	:012003	. 164905	. 08485	. 013992	. 194601	. 086418	. 016817
	1964 West Pakistan	. 126463	. 06324	. 007998	. 098760	. 06245	. 006168	. 138263	. 052593	. 007272
	1965 East Pakistan	. 151601	. 09643	.014619	.109442	. 16309	. 017849	.198184	. 094673	. 018763
	1965 West Pakistan	. 107596	. 11532	. 012408	.084192	. 09539	.008091	.129986	. 669843	. 009079
Infant mortality rate for female babies	1964 East Pakistan	. 109728	. 12961	.014222	. 133416	.11000	. 014676	. 137148	. 103446	. 014187
	1964 West Pakistan	. 152248	. 11874	:018078	. 122195	. 18520	. 022627	. 162306	. 104288	. 016927
	1965 East Pakistan	. 128818	. 11789	. 015186	. 084998	. 21213	. 018031	.155551	. 126380	. 019659
	1965 West Pakistan	. 121883	. 15779	. 019232	. 068080	. 19131	. 013024	. 126265	. 124788	. 015756
Mortality rate for males 1-14 years	1964 East Pakistan	. 010089	. 18330	:001849	. 008678	.19621	. 001703	. 011649	.180078	. 002098
	1964 West Pakistan	. 007750	. 18574	:001439	. 007661	. 14000	. 001073	. 011759	. 082656	. 000972
	1965 East Fakistan	. 006846	. 31840	. 002180	. 005860	. 24576	. 001440	.009648	. 231598	. 002269
	1965 West Pakistan	. 004749	.21794	. 001035	. 003768	. 09695	. 000365	.007044	. 106626	. 000751
Mortality rate for females aged 1-14 years	1964 East Pakistan	. 012984	. 17233	. 002238	. 010864	. 19849	. 002156	.014484	. 173124	. 002508
	1964 West Pakistan	. 012203	. 17406	:002124	. 011362	. 16643	. 001891	. 016709	. 120079	. 002006
	1965 East Pakistan	. 010053	. 16062	.001615	. 006104	. 34697	. 002118	. 012529	. 160823	. 002015
	1965 West Pakistan	. 008817	. 26776	. 002361	. 005967	. 20124	. 001201	. 012097	. 1444409	. 001747
Mortality rate for males aged 15-44 years	1964 East Pakistan	. 005574	. 14000	.000780	. 004813	. 18303	. 000881	. 006047	. 113917	. 000689
	1964 West Pakistan	. 002908	. 18520	. 000539	. 002932	. 13266	.000389	.004365	. 091011	. 000397
	1965 East Pakistan	. 002898	. 34651	.001004	. 001678	.34566	. 000580	.003675	. 259598	. 000954
	1965 West Pakistan	.004065	. 19131	. 000778	. 002504	. 11357	. 000284	. 004970	. 119800	. 000595

$\operatorname{TLBLE} 7(\operatorname{comitnued})$

Parameter	Year/Province	Registration			Survey			Chandra Deming		
		Estimate	CV	SE	Estimate	CV	SE	Estinate	CV	SE
Mortality rate for females aged 15-4.4 years	1964 East Pakistan	. 007586	. 10392	. 000788	. 006832	. 14035	. 000959	. 008574	. 099066	. 000849
	1964 West Pakistan	.004792	. 05099	:000244	. 003220	. 15716	. 000506	. 006202	. 053160	. 000330
	1965 East Pakistan	. 004816	. 13784	. 000664	. 003204	. 25298	. 000811	. 006393	. 069448	. 000444
	1965 West Pakistan	. 004648	. 17663	. 000821	. 003195	. 21563	. 000689	. 006610	. 110086	. 000728
Mortality rate for males aged $45+$	1964 East Pakistan	. 028085	. 12165	. 0034.17	. 028012	. 12206	. 003419	. 033368	. 104690	. 003493
	1964 West Pakistan	. 021725	. 16000	. 003476	. 016603	. 21188	. 003518	. 027535	.125587	. 003458
	1965 East Pakistan	. 034816	. 12124	.004221	. 021313	. 16462	. 003509	. 042522	. 099423	. 004228
	1965 West Pakistan	. 023396	. 16941	. 003964	. 016152	. 15394	. 002486	. 030546	. 142000	. 004338
Mortality rate for females aged $45+$	1964 East Pakistan	. 029276	. 15524	. 004545	. 027125	. 13638	. 003699	. 034777	. 149990	. 005216
	1964 West Pakistan	. 020564	.13416	. 002759	.014581	. 11789	. 001719	.024,688	. 104250	. 002574
	1965 East Pakistan	.032762	. 09000	. 002949	. 013128	. 21377	. 0028806	. 036874	. 102655	. 003785
	1965 West Pakistan	. 017079	. 11832	. 002021	.012610	. 13892	. 001752	. 023571	. 085200	. 002008
Proportion of births of parity $4+$	1964 East Pakistan	. 583615	. 02828	. 016505	. 600170	. 02000	. 012003	. 595715	. 025478	. 015176
	1964 West Pakistan	. 600827	. 03162	. 018998	. 635996	. 02645	. 016822	. 611375	. 020025	. 012243
	1965 East Pakista.n	. 602672	. 03000	. 018080	. 626524	. 02828	. 017718	. 608709	. 032680	. 019893
	1965 West Pakistan	. 589705	. 04690	. 027657	. 640769	. 02000	. 012815	.609007	. 026665	. 016239
Proportion of population 0-14 males	1964 East Pakistan	. -	-	-	. 465590	. 01414	. 006583	-	-	-
	1964 West Pakistan	-	-	-	. 425692	. 02645	. 011260	-	-	-
	1965 East Pakistan	-	-	-	. 472020	. 01732	. 008175	-	-	\cdots
	1965 West Pakistan	-	-	-	. 436896	. 02000	. 008738	-	-	-
Proportion of population 0-14 females	1964 East Pakistan	~	-	-	. 468733	. 01414	. 006628	-	-	-
	1964 West Pakistan	-	-	--	. 437164	. 01000	. 004372	-	-	-
	1965 East Pakistan	-	-	-	. 471840	. 01414	. 006672	-	-	-
	1965 West Pakistan	-	-	-	. 438287	. 01414	. 006197	-	-	-

Tabie 9 (Continued)

Parameter	Province	Registration			Survey			Chandra Deming		
		Estimate	CV	SE	Estimate	cV	SE	Estimate	cv	SE
Proportional	East Pakistan	-	-	-	1.087727	. 01414	. 015380	-	-	-
increase in population between 1962-1965	West Pakistan	-	-	-	1.085287	. 02828	. 030692	-	-	- -

識
fy/k.a.

TABLE ID - MEASURES OF RULIEIITIX FOAGE - SBX SFECIFIC DE:TH RTTES BESED CN CHAPRADAMING ESTIMATES, FGE: 1964-1965

Age at death	Year/Province	Male			Female		
		Estimate of death rate	CV	SE	Estimate of death rate	CV	SE
0	1964 East Pakistan	. 194601	. 0864.18	. 016817	. 137148	. 103446	. 014187
	1964 West Pakistan	.138263	. 052593	. 007272	. 162306	. 104288	. 016927
	1965 East Pakistan	. 198184	.094673	. 018763	. 155551	. 126380	.019659
	1965 West Pakistan	. 129986	. 069843	. 009079	. 126265	. 124788	. 015756
i-4	1964 East Pakisten	. 025353	. 211073	. 005351	. 033522	. 182647	. 006123
	1964 West Pakistan	. 026712	. 108083	. 002887	. 038987	. 130461	. 005086
	1965 East Pakistan	. 022829	. 270841	. 006183	. 028230	. 182291	. 005146
	1965 West Pakistan	. 015790	. 145911	. 002304	. 029574	. 158855	. 004698
5-9	1964 East Pakistan	. 008145	. 170581	. 001389	. 007131	. 227462	. 001622
	1964 West Pakistan	. 005864	. 245071	. 001437	. 005648	. 202383	. 001143
	1965 East Pakistan	. 004489	. 188048	. 000844	. 006133	. 256408	. 001573
	1965 West Fakistan	. 003854	. 126281	. 000487	. 003265	. 227181	. 000742
10-14	1964 East Pakistan	.003087	. 293397	. 000906	. 003020	. 266631	. 000805
	1964 West Pakistan	. 002092	. 243857	. 000510	. 004716	. 234679	. 001107
	1965 East Pakistan	. 002494	. 283544	. 000707	. 001621	. 379770	. 000616
	1965 West Pakistan	. 001685	. 266631	. 000449	. 003539	. 136989	. 000485
15-19	1964 East Pakistan	. 002645	. 356107	. 000942	. 011022	. 267983	. 002954
	1964 West Pakistan	. 002811	. 363956	. 001023	. 004272	. 354999	. 001517
	1965 East Pakistan	. 004290	. 351902	. 001510	. 006441	. 294717	. 001898
	1965 West Fakistan	. 003451	. 207215	. 000715	. 006531	. 368516	. 002407
20-24	1964 East Pakistan	. 005578	. 242211	. 001351	. 006235		. 000913
	1964 West Pakistan	. 003175	. 413267	. 001372	. 008105	$.092309$. 000748
	1965 East Pakistan	. 002509	. 306646	. 000769	. 007193	. 163686	. 001177
	1965 West Pakistan	. 005438	. 168523	. 000916	. 002165	. 167708	. 000699
25-29	1964 East Pakistan	. 002623	. 234359	. 000607	. 008699	. 098798	. 000859
	1964 West Pakistan	. 004330	. 286751	. 001242	. 004624	. 194720	. 000900
	1965 East Pakistan	. 002637	. 294314	. 000776	. 007340	. 358200	. 002629
	1965 West Pakistan	. 004231	.394853	. 001671	. 006196	. 171526	. 001063
30-34	1964 East Pakistan	. 009306					
	1964 West Pakistan	. 003803	.352966	. 001342	$.007730$. 190003	. 001469
	1965 East Paki.stan	. 006537	. 176788	. 001156	. 006069	. 164116	. 000996
	1965 West Pakistan	. 006221	. 24.0554	. 001496	. 004980	. 286753	. 001428
35-39	1964 East Pakistan	. 007363	. 139596	. 001028	. 012980	. 157934	. 002050
	1964 West Pakistan	. 005682	. 305044	. 001733	. 006925	. 322954	. 002236
	1965 East Pakistan	. 003740	. 506057	. 001893	. 005839	.366734	. 002141
	1965 West Pakistan	. 003778	. 530289	. 002003	. 010191	. 207369	. 002113

323

TABLE ID (COMTMED)

Age at death	Year/Province	Male			Female		
		Estimate of death rate	CV	SE	Estimate of death rate	CV	SE
40-44	1964 East Pakistan	. 010799	. 205063	. 002214	. 004117	. 560770	. 002309
	1964 West Pakistan	.008067	. 257577	. 002078	.006302	. 253756	. 001599
	1965 East Pakistan	. 003502	. 428503	. 001501	. 005335	. 433690	. 002314
	1965 West Pakistan	. 008972	. 192252	. 001725	. 010364	. 192582	. 001996
45-49	1964 East Pakistan	. 011575	. 406562	. 004706	. 007858	. 213654	. 001679
	1964 West Pakistan	. 010745	. 253716	. 002726	. 008718	. 444203	. 003873
	1965 East Pakistan	. 013545	. 407378	. 005518	. 009979	. 222090	. 002216
	1965 West Pakistan	. 009284	. 44.0427	. 004089	. 005117	. 384488	. 001967
50-54	1964 East Pakistan	. 017497	. 119264	. 002087	. 019181	. 279152	. 005354
	1964 West Pakistan	. 006483	. 242532	. 001572	. 013589	. 201896	. 002744
	1965 East Pakistan	. 017456	. 352986	. 006162	. 010251	. 229247	. 002350
	1965 West Pakistan	. 019471	.137706	. 002681	. 007109	. 312149	. 002219
55-59	1964 East Pakistan	. 014207	. 245695	. 003491	. 014503	. 456367	. 006619
	1964 West Pakistan	. 025418	. 126123	. 003206	. 004494	. 102728	. 000462
	1965 East Pakistan	. 026938	. 296391	. 007998	. 028825	. 254547	. 007337
	1965 West Pakistan	. 024460	. 319515	. 007815	. 010325	. 296562	. 003062
60-64	1964 East Pakistan	. 040452	. 202571	. 008194	. 034066	. 311764	. 010621
	1964 West Pakistan	. 025898	. 108591	. 002812	. 023400	. 215912	. 005052
	1965 East Pakistan	. 040693	.3049'79	. 012411	. 052685	. 141887	. 007475
	1965 West Pakistan	. 024480	. 246885	. 006044	. 028815	. 231283	. 006664
$65+$	1954 East Pakisten	. 092157	. 170129	. 015679	. 125602	. 164578	. 020671
	1964 West Pakistan	. 067727	. 158436	. 010730	. 065593	. 133064	. 008728
	1965 East Fakistan	. 124569	. 096969	. 012079	. 119088	. 189005	. 022508
	1965 West Pakistan	. 075165	. 127824	. 009608	. 063825	. 086510	. 005522

1. Ahmed, Nazir and Karol J. Krotki, "Simultaneous Estimation of Population Growth: The Pakistan Experiment, " Pakistan Development Review, Vol. 3, No. 1, (1963), pp. 37-65.
2. Chandrasekaran, C. and W.E. Deming, "On a method of Estimating Birth and Death Rates and Bxtent of Registration," Journal of the American Statistical Association, Vol. 44, No. 249, (1949).
3. Cochran, W.G., Sampling Techniques, John Wiley \& Sons, New York, (1953).
4. Hansen, Morris H., William M. Furwitz and William G. Madowo Sample Survey Methods and Theory, Vol. II, John Wiley \& Sons, Now York, (1953).
5. Population Growth Estimation, Report of the Population Growth Estimation Experiment: Description and Results for 1962 and 1963 , Pakistan Institute of Development Economics, Karachi, (1968) forth coming.
6. Yusuf, Farhat, Population Growih Estimation: Studies in Methodology I, Matching of Vital Events, Research Report No. 67, Pakistan Institute of Development Economics; Karachí, (1968).

APPENDIX TABLE 1: THE FIRST STAGF OF THE PGE ESST PAKISTAN RUROL SAMPLE

Division Stratum	Total No. of groups	No of groups in the sample

Rajshahi	1	6	2
Khuina	2	6	2
Chittagong	3	8	2
Dacca	4	8	4

APPENDIX TABLE 1: THE FIRST STAGE OF THE PGE EIST PAKISTAN RUR'I SMMPLE

Division	Totratum No.	No. of groups
	of groups	in the sample

Rajshahi	1	6	2
Khulna	2	6	2
Chittagong	3	8	2
Dacca	4	8	4

APPENDIX TABLE 2: THF SECOND AND THIRD STAGES OF THR PGE EAST PAKIST\&N RURAL SAMPLF

Stratum	$\begin{aligned} & \text { Group } \\ & \text { No. } \end{aligned}$	Total No. of U.Cs	No. of U.Cs in the semple	1961 population of the U.C.	irea code
1	1	221	1	Not available	110
	2	176	1	Not available	111
2	1	133	1	Not available	122
	2	102	1	Not available	123
3	1	93	1	Not available	134
	2	133	1	Not available	135
4	1	128	1	Not available	146
	2	152	1	Not available	147
	3	127	1	Not available	148
	4	158	1	Not available	149

\#
lapeendix table 3: THREE STAGES OF THE PGE EAST PGKISTAN URBAN S\&MPLE

Divisions	Stratum	Total No. of urban areas	No. of unban areas in the sample	Total No. of U.Cts.	No. of U.Cts in the sample	1961 population of the U.Ct.	$\begin{aligned} & \text { rea } \\ & \text { code } \end{aligned}$
```Rajshohi and Khulna```	5	31.	1	8	1	Not available	150
$\begin{aligned} & \text { Dacce } \\ & \text { and } \\ & \text { Chittagong } \end{aligned}$	6	27	1	9	1	Not available	161

APPENDIX T:BLE 4: THE FIRST ST:IGE OF THE PGF WEST PAKISTAN RUR:IL SMPLI

Division	StratumTotal No,   of groups   in the sample of groups		
Peshawar and   D.I.Khan	1	3	1
Rawalpindi	2	3	1
Lahore	3	5	1
Multan	4	5	1
Bahawalpur	5	2	1
Hyderabad and Karachi	6	2	2

APPENDIX T BLE 5: THE SECOND, THIRD, AND FOURTH STAGFS OF THE PGE WEST PGKISTAN RURAL SAMPLE

Stratum	aroup No.	Total No. of tehsils	No. of tehsils in the sample	Total No. of U.Gs.	No. of U.Cs in the sample	1961 Population of the U.C.	Area code
1	1	9	1	9	1	Not available	200
2	1	3	1	40	1	Not available	211
3	1	2	1	46	1	Not available	222
4	1	4	1	22	1	Not available	233
5	1	5	1	19	1	Not available	244
6	1	1.5	1	4	1	Not available	255
7	1	5	1	31	1	Not available	266
	2	2	1	57	1	Not available	264
8	1	11	1	6	1	Not available	278
	2	11	1.	8	1	Not available	277

APPFNDIX T/BLAE 6: THREE ST4GES OF THE PGF WEST PAKISTAN URBAN SAMPLE


This work is licensed under a
Creative Commons
Attribution - NonCommercial - NoDerivs 3.0 Licence.

To view a copy of the licence please see: http://creativecommons.org/licenses/by-nc-nd/3.0/


[^0]:    1. As the wards (Union Committees) in Hyderabad city were too large, they were subdivided into subwards. One subward was selected randomly and from the selected subward a cluster of about 5,000 population was selected.
