DEVELOPMENT STUDIES RESEARCH GROUP

τ.

Working Papers

SOUTH AFRICAN DEVELOPMENT IN INTERNATIONAL PERSPECTIVE, 1950-1975.

.

C.E.W. Simkins

DSRG WORKING PAPER NO. 8.

University of Natal Pietermaritzburg Department of Economics

ACE PMB

Development Studies Research Group

SOUTH AFRICAN DEVELOPMENT IN INTERNATIONAL PERSPECTIVE, 1950-1975.

. C.E.W. Simkins

DSRG WORKING PAPER NO. 8. * -

> Pietermaritzburg September 1979

TABLE OF CONTENTS

Page

Abstract	i-ii
South African Development in international	1 - 15
Notes	16-17
APPENDICES:	

А	Observed and expected values of the Chenery and Syrquin variables - South Africa 1950-74	18-33
В	Construction of the UNRISD profile for South Africa	34-42
С	List of indicators used by Adelman and Morris	43-44

TABLES:

I	Comparisons between observed and expected values for 27 variables (Chenery and Syrquin) - South Africa 1950-74	5-6
II	UNRISD indicators (transferred scores) - 1960,1965,1970 and 1975	8
III	Social indicators: South Africa 1957-62	11

Two well-known attempts to characterise South African development in terms of an internationally based perspective, have relied on Rostow's five-stage theory of economic growth. More recent international studies, however, are better than Rostow's in three respects: they work with a richer concept of development, they do not force the evidence into a rigid 'stages' model and they are better based empirically. The limitations of these studies are their loose ties to theories of development and their assumption that all countries follow a similar development trajectory - this assumption is necessary for one to be able to draw conclusions about development trajectories from cross-sectional studies.

Comparison of observed values of 27 variables in South Africa with 'expected' values predicted from a study by Chenery and Syrquin leads to the conclusions that relative to its expected position, South Africa (i) has an unequal distribution of income (ii) does not, as is sometimes supposed, have unusually large participation by the government in the economy, at least as far as government's claim on and use of resources is concerned (iii) is underindustrialised and overserviced (iv) trades heavily (v) is behind on urbanisation.

Plotting of South Africa's 18- variable development profile on a chart developed by the United Nations Research Institute for Social Development enables one to make the following observations: (i) There are considerable deviations from normal in South African development (ii) In both 1960 and 1975 social indicators lay generally below economic indicators i.e. for our general level of development we have a powerful economy but rather poor social conditions (iii) Of the social indicators the two lowest are life expectancy and housing.

From a consideration of South Africa against the background of Adelman and Morris's work, it is possible to conclude:

(i) Although South Africa should belong to the top group of developing nations by virtue of its per capita GNP it in fact gets classified in the intermediate group because of low scores on a number of social indicators. This confirms the UNRISD finding.

(ii) In common with other intermediate countries South African social development is uneven which leads to structural change and/or political instability.
 (iii) Political participation in South Africa (assessed as very low in the

-ii-

period 1957-62) is unlikely to increase as an automatic consequence of socioeconomic development.

(iv) Income distribution is more unequal in South Africa than one would expect, which confirms the Chenery and Syrquin finding.

It is not implausible to attribute some of these deviations from normal to uniquely South African political and social institutions. It therefore appears too simple to assert with O'Dowd that 'most of the characteristics, economic, political and social, of the South African scene are normal in terms of its present stage of development'.

South African development in international perspective, 1950-1975.

'Looking at ourselves in isolation, we may so easily have a distorted picture that it is wise, whenever possible, to compare our experience with that of other developing nations. This is greatly facilitated if we can find some general categories or broad terms of reference; and, for this purpose, we cannot do better than accept W.W. Rostow's five stages of economic growth ...'

'Most of the characteristics, economic, political and social, of the South African scene are normal in terms of its present stage of economic development.'² (M.C. O'Dowd)

(D. Hobart Houghton)

Hobart Houghton's first assertion is as sensible as it was on the day he wrote it. The latter part of his second assertion has worn less well, however; there are now to be had better studies of development patterns than Rostow's. The purpose of this paper is to assess recent South African development against the background supplied by three such studies carried out by Chenery and Syrquin³, the United Nations Research Institute for Social Development⁴ and Adelman and Morris⁵ respectively.

In what respects are these studies better than Rostow's?

In three, I suggest:

(i) It is now generally agreed that development refers to more than just economic growth. Even if it is not clear just what this 'more' consists of, we may say that changes in economic, social and political structure as well as distributive changes are involved. Rostow does discuss changes in economic structure in some detail; changes in social and political structure are dealt with more briefly and less satisfactorily. Distribution is not dealt with explicitly at all, though presumably (for instance) the age of high mass consumption' is somewhat more egalitarian than earlier stages. By contrast, our studies consider many more variables - Chenery and Syrquin deal with 27 (7 cover accumulation processes, 12 resource allocation processes and 8 demographic and distributional processes), UNRISD with 18 (9 economic and 9 social) and Adelman and Morris with 51 (14 sociocultural, 18 political and 19 economic).

(ii) It has been proved difficult to superimpose five distinct, sequenced
 'stages of growth' on the evidence. A little of the difficulty surfaces in Rostow's
 book and anomalies increase as more evidence is taken into consideration. Stages
 of growth are replaced by continuous structural change over the range between

-2-

100 and 1000 US dollars (1964 prices) gross national product per capita in Chenery and Syrquin, the UNRISD study establishes correspondence points between the various indicators and Adelman and Morris use a variety of multivariate

statistical techniques. In each case an attempt is made to extract underlying structure from the data instead of imposing a pattern on it.

(iii) <u>Ceteris paribus</u>, one expects studies with a broad data base to yield more reliable results than those with a narrow base. Rostow relied on data from 14 countries only when making most of his points. Information has improved greatly since then - Chenery and Syrquin consider 101 countries excluding only (most) communist economies and countries where the population in 1960 was below one million. UNRISD considers 115 countries with 1960 population over one million and Adelman and Morris 74 non-communist countries excluding those for which data are poor.

Two points need to be made about the limitations of the three studies we shall be considering:

(i) They are, at best, loosely tied to theories of development. Chenery and Syrquin work within a general model of structural change which assumes similar variation in consumer demand with rising per capita income, accumulation of capital at a rate exceeding the growth of the labour force and access of all countries to similar technology, international trade and capital inflows. Within this framework they selected ten basic processes that appear to be essential features of development in all countries. These processes were suggested either by economic theory or by empirical uniformities.⁶ Adelman and Morris sought an inclusive but parsimonious set of indicators to represent 'the most important aspects of economic, social and political institutions and performance'⁷ and subjected these to factor analysis in order to study the interconnections revealed by the data. Their selection of indicators and interpretation of results reveal a modernisation theoretical approach. The UNRISD study started out with a provisional list of over seventy indicators and weeded out those with poor country coverage, effective duplicates and those which correlated poorly w th other indicators. Since the studies are so empirical it is worth sounding the usual warning that observed correlations do not establish causation; one may only impute causation on the basis of a theory.

-3-

(ii) They draw conclusions about development trajectories from cross-sectional studies. This,as Adelman and Morris point out, requires justification - the justi-

fication they offer is that one may view cross-country results as representative of patterns of change typical of individual countries at a given point in time when access to technology and opportunities for trade are, at least in principle, common to all.⁸ These are similar assumptions to those of Chenery and Syrquin, cited above. Some theories of underdevelopment (e.g. dependency theory), however, assert that the prospects facing any given economy depend on its relative quite as much as its absolute position. If this is true the shape of the average transition path (which now becomes a dubious concept) may change over time, associations holding now being dissimilar to those holding 50 years ago or 50 years hence. The objection may be met if one assumes that such change, if it occurs, occurs relatively slowly. One should then also stress that 'normal' development can only mean development along some average trajectory derived from evidence gathered from a number of countries in the third quarter of the twentieth century. Trajectories at other times may be different, so one should not project these results outside this time period.

We now turn to a detailed discussion of South African development against the background of each of the studies, starting with the most narrowly economic.

1. Chenery and Syrquin

Chenery and Syrquin proceed by using regression analysis. The regression equations (which can be thought of as reduced forms of a general equilibrium system) are of the general form

$X = \alpha + \beta_1 \ln Y + \beta_2 (\ln Y)^2 + \gamma_1 \ln N + \gamma_2 (\ln N)^2 + \Sigma \delta_j T_j + \varepsilon F^9$

where X is the dependent variable (usually taken as a ratio to GDP or to another appropriate aggregate), γ is GNP per capita in 1964 US dollars, N is population in millions, F is net resource inflow as a share of total GDP and T. (j=1,2,3,4) is the time period (the period 1950-1970 is divided into four subperiods of five years each). For any given year in South Africa Y, N, F and T can be found. Since

the coefficients are estimated by Chenery and Syrquin from cross-country observations, it is then possible to calculate an expected value of X for South

-4-

Africa. This expected value can then be compared with the observed value of X for the year under consideration.

Chenery and Syrquin start by estimating coefficients from observations on all countries. They then classified countries by scale and by trade orientation and ended up with three groups:

(1) large, (2) small, primary oriented and (3) small, industry oriented. A comparison of the statistical results of these three groups showed that the three-way division provided a significant improvement over the pooled regressions for most of the allocation processes and some of the accumulation processes.¹⁰ South Africa, having had a population of over 15 million in 1960, falls into the large category, but only just. Where 'large' regression coefficients are reported these are used to calculate the expected values of the variables under consideration.

Observed and expected values of the variables are reported in Appendix A together with notes on their derivation. Limits are placed 2% above and below expected values - if the observed values lie within these limits, the variable is classified normal for the year under consideration.¹¹ If the observed values lie outside these limits they are classified as below normal or above normal. The comparisons between observations and expectations are carried out in Table I.

Five themes may be extracted from Table I. Relative to its expected position, South Africa:

(i) has an unequal distribution of income. This can be seen directly from variables 10a and 10b. The single income distribution estimate is not very reliable, so one looks for confirming evidence elsewhere and finds it in a high savings ratio as well as in low food consumption (although private consumption as a whole tends to be above normal) and a high birthrate. More supporting evidence for a particular type of inequality comes from variables 3a and 3b - although expenditure on education is normal, the school enrolment ratio is considerably below normal throughout the period.

(ii) does not, as is sometimes supposed, have unusually large participation by the government in the economy, at least as far as government's claim on and use of resources are concerned. Government revenue is normal and tax revenue below

	-5-
TABLE I	Comparisons between observed and expected values for 27 variables -
	South Africa, 1950 - 1974 ¹²
Variable nam	e Countries on No. of <u>Years observed value</u>

		sion based	vations	expected	NOTILAT	pected
ACCU	MULATION					
la	Saving ¹	LARGE	25	1960	1951-53, 1955-59, 1961-64	1950,1954 1965-74
1b 1	Investment ¹	LARGE	25	1962	1950,1954- 57,1959- 1961,1963 1966,1968	1951-53, 1958,1964- 65,1967, 1969-74
1c	Foreign capital inflow ¹	ALL	20 4	1957,1959- 64	1955-56, 1958,1965- 67,1969.	1952-54,1968 1970-72
2a	Government revenue ¹	LARGE	25	1962	1950-61,	
2b	Tax revenue ¹	ALL	25	1950-74	1903-74	
3a	Education expenditure ¹	ALL	8		1950,1960, 1963,1969- 73	
3b	School enrolment ratio ²	LARGE	18 4	1952-55, 1958-72		
RES	OURCE ALLOCATION			1		
4a	Private consumption ¹	LARGE	20 4		1963,1965- 70	1952-62,1964 1971-72
4b	Government consumption 1	LARGE	20 4		1952-61, 1963-69	1962,1970- 72
4c	Food consumption ¹	ALL	25	1950-56, 1958,1971- 72,1974	1957,1959- 70, 1973	
5a	Primary share in pro- duction ¹	ALL	20 4		1958-65, 1968-72	1952-57, 1966-67
5b	Industry share in production ¹	ALL	25	1950-74		
5c	Utilities share in production ¹	ALL	25			1950-74
5d	Services share in production ¹	ALL	25	1950-58, 1961-70, 1974	1959-60, 1971-73	
<u>6</u> a	Exports 1	LARGE	25			1950-74
6b	Primary exports 1		18			1957-74
0C	manutactured exports '		8		1965,1970- 71	1957-64, 1966-69, 1972-74
6d	Services exports ¹	LARGE	25		1950-74	
6e	Imports	LARGE	25			1950-74

	Variable name	Countries on	No. of	Years observed	value Normal	Abovo
		sion based	vations	Below expected	normar	expected
DE MO G	RAPHIC AND DISTRIBUTIONAL					
7a	Primary share of employment	ALL	15	1972-73	1960-71, 1974	. N
7b	Industry share of em- ployment	ALL	15	1960-74		
7c	Services share of employment	ALL	15			1960-74
8	Urbanisation ³	ALL	3	1951,1960, 1970		
9a	Birthrate	ALL	2	•		1960,1970
9b	Deathrate	ALL	2		1960,1970	
10a	Share of highest 20% in income	ALL	1			1965
10b	Share of lowest 40% in income	ALL	1	1965		

Notes: ¹ Expressed as a fraction of GDP
 ² School enrolment as a fraction of people aged 5-19
 ³ Urban dwellers as a fraction of total population
 ⁴ Observed values compared with 5-year moving average of expected values to lessen effect of uninteresting year-to-year fluctuations.

normal throughout the period and only four out of twenty observations of government consumption are above normal.

-7-

(iii) is underindustrialised and over-serviced. Industry's share of both production and employment is consistently below normal. Over-servicing does not appear in the production figures but does in the employment figures. This may be a further result of income inequality insofar as it affect patterns of demand. The primary share in both employment and production is (perhaps surprisingly) normal over much of the period.

(iv) trades heavily. Exports and imports are way above normal for large countries, coming closer to the expected paths for small balanced countries. Here the marginality of South Africa's classification makes itself most clearly felt.
Primary exports are well above normal; manufactured exports tend to be above normal while service exports are normal. This situation reflects the consequences of our natural resource endowments and of our leading position in Southern Africa.

(v) is behind on urbanisation - more sharply so in 1970 than in 1960 or 1951 - reflecting the effects of influx control.

2. UNRISD

For each of the 18 indicators one may, in the case of South Africa, find a raw measurement. These measurements are reported in Appendix B. These raw measurements are converted into transformed scores. Each transformed score lies between 0 and 100 and transformations are so made that <u>on average</u> a given score on one indicator corresponds to that score on all the others. The correspondences and transformations were made on the basis of a cross-country sample for 1960. Correspondence charts for other years would look somewhat different, but they are not available.

For South Africa (as for other individual countries) a 'development profile' can be drawn which shows the pattern of deviations on individual scores from the mean score which can be taken as a general index of development. Transformed scores for 1960, 1965, 1970 and 1975 are reported in Table II which enables us to make the following observations:

(i) The transformed scores vary considerably over the eighteen indicators suggesting considerable deviations from normal in South African development. That these imbalances are a long-standing feature of our economy follows from a relative constancy in the shape of the 1960 and 1975 profiles.

TABLE II - UNRISD indicators(transformed scores) 1960,1965,1970 and 1975.

		1960	1965	1970	1975
Soc	ial				
1.	Expectation of life at birth	25	27	28	29
2.	Percentage population in localities of 20 000 plus	46	(47)	48	(49)
3.	Per capita animal protein consumption	71	65	69	64
4.	Combined primary and secondary enrol- ment ratio	28	31	35	46
5.	Vocational enrolment ratio	32	34	35	34
6.	Average number of persons per room	13	(13)	14	(14)
7.	Newspaper circulation per thousand	25	24	24	25
8.	Telephones per hundred thousand	56	60	70	76
9.	Radios per thousand	41	48	55	63

Economic

GNP per capita	39	43	49	51	
Economic mean	55			67	
Social mean	37			44	
Mean	46	49	52	56	
18. % EAP as salaried and wage earners	76	71	70	69	
17. Per capita foreign trade	52	56	57	70	
16. % GDP from manufacturing	38	46	49	49	
15. Per capita energy consumption	82	90	96	100	
14. Per capita steel consumption	37	51	58	66	
13. Per capita electricity consumption	67	79	87	93	
12. % adult male labour in agriculture	69	74	77	80	
 Agricultural production per male agricultural labourer 	32	34	34	36	
10. % EAP in electricity, gas, water, sanitary services, transport, stor- age and communication	39	38	35	36	

(ii) Social indicators lie generally below economic indicators in both 1960 and 1975. In terms of transformed scores the gap between the two sets actually widened over the period. Six of the nine economic indicators grew by more than 10 points over the period, whereas only three of the social indicators (primary and secondary education, telephones and radios) did. One can think of particular reasons for the exceptions to the general relative position of social and economic indicator scores. For instance, telephones per hundred thousand are high because the majority of telephones are installed in business premises, so that this 'social' indicator has 'economic' content. On the other hand, agricultural production per male agricultural labourer is relatively low because there remains a large subsistence sector side-by-side with a capital-intensive and efficient commercial sector. Insofar as this reflects dualism in South African society, this is a 'social' as well as an 'economic' indicator. So the major conclusion to be drawn from the UNRISD study is that, for our general level of development, we have a powerful economy but rather poor social conditions.

-9-

(iii) Of the social indicators, one may observe that life expectancy and standards of housing are particularly low. The two education indicators are below the mean throughout the period, confirming the finding in the Chenery and Syrquin section. There has, however, been a substantial narrowing of the gap between the primary and secondary education indicator and the mean since 1960.

(iv) The share of manufacturing in GDP score (lower than the mean) and foreign trade score (higher than the mean) confirms the findings in Table I. Note also the very high scores of electricity consumption and energy consumption.

3. Adelman and Morris

Adelman and Morris start out by applying factor analysis to per capita GNP and 24 social and political variables for all 74 countries. They extract three factors jointly 'explaining' 70% of the variance in per capita GNP:

- I, interpreted as representing 'the processes of change in attitudes and institutions associated with the breakdown of traditional social organisation¹³ (53%)

- II, interpreted as representing 'a movement along a scale that ranges from centralised authoritarian political forms to specialised political mechanisms capable of representing the varied group interests of a society and of aggregating these interests through participant national political organs'¹⁴ (10%)

-10-

- III, the 'character of leadership' ... a movement along the scale implies a decline in the power of traditional elites and a rise in the strength of 'indus-trialising elites ' 15 (7%)

Since the first factor accounts for over 50% of intercountry variations in income per capita, Adelman and Morris used the country scores for this factor to rank countries with respect to their level of socioeconomic development. The countries are then divided into three groups. Interestingly, South Africa falls into the intermediate group. It had by far the highest per capita GNP in 1961 in this group; in fact the South African GNP per capita exceeded those for 17 countries in the 25-country 'high' group. (Remember that Adelman and Morris are considering underdeveloped countries). This peculiarity reinforces the point (from a different angle)¹⁶ already discussed - South Africa shows a particular disparity between 'social' and 'economic' development.

Countries in the intermediate group are historically, culturally and geographically heterogeneous. They are, however, 'without exception transitional societies in which the process of social, economic and political modernisation has proceeded far enough to profoundly disturb or even completely shatter traditional customs and institutions without, however, proceeding far enough to set them on the path of continuous and effective development.'¹⁷ Yet, as far as the economic component of development is concerned, they generally have high enough rates of gross investment for sustained growth - this is certainly the case in South Africa. Another general characteristic of intermediate countries is unevenness of social change; this is illustrated in Table III which displays the scores on all social indicators for South Africa in 1957-62.

-11-TABLE III <u>Social indicators: South Africa 1957-62</u>

Indicator	Score	Interpretation
Size of the traditional agricultural sector	А	Less than 25% of population in tradi- tional subsistence agriculture
Extent of dualism	*	Some significant modernisation of methods of production in almost all sectors of the economy. No clear-cut sectoral or geographical cleavage be- tween the modern and nonmodern seg- ments of the economy.
Extent of urbanisation	A-	30% or more of total population in urban areas of 20 000 or more in- habitants
Character of basic social organisation	C+	Strong tribal allegiances widespread, but these have been weakened in im- portant rural areas as well as urban areas
Importance of the indigenous middle class	D+	Expatriate settled group comprising over 1% of the population dominate the middle class almost completely
Extent of social mobility	В-	School enrolment ratio of over 40 percent. Middle class occupations over 10 percent of active male population. But presence of pro- hibitive ethnic or cultural barriers affects significant parts of the population
Extent of literacy	В-	Literacy rate of 35 to 44 percent
Extent of mass communication	В+	Composite index based on daily news- paper circulation and number of radio receivers
Degree of cultural and ethnic homogeneity	D	Less than 51% of the population speaks the dominant language
Degree of social tension	C	During 1957-62 suffered from marked social tensions accompanied by con- siderable violence and social in- stability arising from racial, tribal, religious and cultural tension

continued/.....

Indicator	Score	Interpretation
Crude fertility rate	C+	Fertility rate of between 40 and 49 per thousand
Modernisation of outlook	A	Outlook of the urban educated pop- ulation was significantly modern- ised, judging by the standards of less-developed countries. Programmes of political, social and economic modernisation had gained significant support among both the urban and rural populations

Source:- Adelman and Morris (1971) pp.19-51. Where necessary, scores have been transformed to make A the 'modern' end of the scale.

This uneven social change generates social tension which in turn generates structural change and/or political instability.

In their second book (which draws on much the same data as the first) Adelman and Morris set out to investigate sources of intercountry differences in levels of political participation in underdeveloped nations. They construct an ordinal measure of political participation based on three broad criteria:

- the extent to which the major socioeconomic and cultural-ethnic groups, through participant associations and institutions, have their interests represented in and are able to influence the making of national political decisions affecting them.

 the extent to which individuals belonging to nationally represented cultural-ethnic and socioeconomic groups can choose between different political channels in seeking national representation of their interests.

- the extent of actual participation by individuals in the national political process through participation in political parties, special interest groups, or other institutions or associations carrying out political functions, or through voluntary voting

-13between genuine political alternatives.¹⁸

South Africa scored a poor J on this measure being a country 'in which major groups in the population probably consisting of over two-thirds of the population are without formal national political representation and in which it is also probable that less than one-quarter of the adult population participate in some minimal way in groups, associations or institutions representing their interests at the national level.' ¹⁹ Some might argue that the position has changed for the better since 1957/62; others would deny this. The difference would revolve around the content given to terms like 'national' and 'participation'. This illustrates the general point that it is more hazardous to assign a symbol to a political variable than it is to assign a number to an economic indicator. The social indicators considered fall between these two extremes of reliability.

The technique of discriminant analysis is applied to obtain a set of country characteristics that best discriminate among groups of nations having different extents of political participation. The technique is applied to all 74 countries and to each of the three groups already distinguished. For the intermediate group the discriminant function includes three clusters of variables: freedom of political opposition and of the press, importance of the indigenous middle class and political strength of the traditional elite.²⁰ The interesting thing to note is that of the indicators that go to make up these three variables eight are political, four social and three economic. The implication (and it holds for other groups of countries too) is, as Adelman and Morris point out, 'that increases in political participation are by no means automatic consequences of socioeconomic development in underdeveloped countries.' ²¹

Finally, we may turn to Adelman and Morris's analysis of the size distributions of income in underdeveloped countries. They consider three measures:

- the income share of the lowest 60% of the population
- the income share of the middle quintile of the population
- the income share of the wealthiest 5% of the population.

These are used as dependent variables in successive 'analyses of hierarchial interactions,' a type of analysis of variance which does not assume linear relationships. Adelman and Morris describe the technique as follows:

'...the focus is on 'explaining' variations in the dependent variable. The analysis selects from a set of independent variables the one that splits the parent sample into two subgroups having the smallest possible combined dependent-variable variance within the subgroups ... Each of the two subgroups thus obtained is then treated as a new parent sample for which the analysis again selects the independent variable providing the 'best' split ... Each of these subgroups is again treated as a parent sample, and the process is continued through a series of binary splits. The result is an asymmetrical branching process that subdivides the original parent sample into subgroups constructed to facilitate prediction of the value of the dependent variable with the least error ... To ensure statistical significance, groups are candidates for splits only (1) if they contain a number of observations greater than $ar{N}$ (set equal to 10) and (2) if they include at least a specified proportion of the overall variance (set equal to 10 percent). In addition, splits that are not statistically significant at the 5% percent level (by an F test) and splits that produce splinter groups (i.e. that contain fewer than five observations) are not carried out in this analysis.' 22

-14-

The placing of South Africa (in 1965) in this scheme is complicated because Adelman and Morris seem to have made a subtle mistake ²³ and allowed the computer to classify South Africa as sharply dualistic rather than mildly dualistic. Instead of belonging to the sharp dualism and low and medium GNP per capita group (where the share of the poorest 60% in income is predicted to be 17%), South Africa should appear with the low and moderate dualism, moderate and high development potential and moderate and low school enrolment group (where the predicted share is 23%). The actual share reported by Adelman and Morris was 16%. As far as the share of the top 5% is concerned, South Africa is in the group having fair or abundant natural resources, a small indigenous or expatriate middle class and a mixed economy with a large government role and a predicted top 5% share of 31% (actual share reported as 39%). When it comes to the share of middle 20%, South Africa is in the group displaying low and moderate dualism and diversified manufacturing exports. The predicted share is 16% and the actual share 11%. These results confirm the finding in the Chenery and Syrquin study that inequality in South Africa is greater than the expected value.

<u>Conclusions</u>

The results of the three studies confirm one another in so far as they are comparable. There emerge two linked special features of particular importance in South African development over the period 1950-1975. These are:

-15-

(i) the lag between economic and social development. This shows up in low scores in the fields of social welfare (health and housing), social organisation (basic social organisation, indigenous middle class and social mobility) and behaviour (fertility rate). Economic development is more normal (or 'above normal') with a few exceptions: low school enrolment, a low share of industry in both production and employment and low urbanisation.

(ii) the unequal distribution of income. This is inferred directly from reported income distribution figures (which are not very reliable) and indirectly from its effects.

It is not implausible to attribute some of these deviations from 'normal' to uniquely South African political and social institutions. The political retardation of urbanisation has as its accompaniment the preservation of more of traditional African social organisation than would otherwise be the case. The poor distribution of education (which reflects the unequal allocation of resources within it) leads to low social mobility (also restrained by law) which contributes to inequality which in turn contributes to poorly distributed education etc. Inequality in the allocation of public resources to health and housing lower scores in these fields.

It therefore appears that O'Dowd's assertion quoted at the beginning of this paper is altogether too simple. It assumes that the organisation of South African society into racial estates has only the effect of allocating roles within a given structure (given by the level of development). This paper suggests that there are abnormalities in South African development judged against an international background between 1970 and 1975. These are related to well-known features of the South African scene racial organisation affects social structure as well as distributing roles within it.

-16-

NOTES

- D. Hobart Houghton, The South African Economy (second edition), Oxford University Press, 1967, p.6. The reference is, of course, to W.W. Rostow, <u>The Stages of</u> Economic Growth (A Non-Communist Manifesto), Cambridge University Press, 1960.
- 2 M.C. O'Dowd, The Stages of Economic Growth and the Future of South Africa, mimeo, 1966, p.1.
- 3 H. Chenery and M. Syrquin, Patterns of Development 1950-1970, Oxford University Press, 1975.
- 4 United Nations Research Institute for Social Development, Contents and measurements of socio-economic development, Report no 70,10, Geneva: UNRISD, 1970.
- 5 I. Adelman and C.T. Morris, <u>Society, Politics and Economic Development</u>: A Quan-<u>titative Approach</u>, John Hopkins, 1971. <u>Economic Growth and Social Equity in Developing</u>

Countries, Stanford University Press, 1973.

.

- 6 Chenery and Syrquin, op.cit., p.5-7.
- 7 Adelman and Morris (1971), p.15.
- 8 Adelman and Morris (1971), p.149.
- 9 Chenery and Syrquin explain that the semilog formulation was chosen 'to retain the adding-up properties of the shares of a given aggregate. The fitted equations and derived predicted values of a common semilog formulation for the components of an aggregate add up identically to the fitted equation and predicted value for the aggregate - variable by variable - provided all estimates refer to the same sample.'(pp. 142-3)
- 10 Chenery and Syrquin, <u>op. cit.</u>, p. 74 and 88.
- ll Limits of 2% were chosen because Chenery and Syrquin have failed to report some of their coefficients to sufficient decimal places to enable users of their book to calculate expected values more accurately than this. Thus if (for example) the expected savings ratio were 25%, savings would be regarded as normal if the observed ratio lay between 23% and 27%.
- 12 Expected values of variables for the period 1970-1974 were calculated assuming no shift in the time period coefficient between 1965-1969 and 1970-1974.
- 13 Adelman and Morris (1971), p.153.
- 14 Adelman and Morris (1971), p.155.
- 15 Adelman and Morris (1971), p.157.
- 16 The variables associated with Factor I (apart from GNP per capita) are size of the traditional agricultural sector, extent of dualism, extent of urbanisation, character of basic social organisation, importance of the indigenous middle class, extent of social mobility, extent of literacy, extent of mass communication, crude fertility rate and degree of modernisation of outlook.

- 18 Adelman and Morris (1973) p.118.
- 19 Adelman and Morris (1973) p.215.
- 20 For an interpretation of why this is so, consult Adelman and Morris (1973) pp.131-133.
- 21 Adelman and Morris (1973) p.139.
- 22 Adelman and Morris (1973) pp. 146-148.
- The mistake arises because South Africa has a unique value (A-) on the dualism indicator (Adelman and Morris. 1971, p.24.). This indicator is a nominal rather than an ordinal variable; accordingly the computer has been allowed to class A- with C (sharp dualism). This should have been prohibited.

Appendix A

Observed and expected values of the Chenery and Syrquin variables -

-18-

South Africa, 1950-74

Source codes

(1) South African Reserve Bank, A statistical presentation of South Africa's national accounts for the period 1946 to 1970, Pretoria, June 1971 (2) South African Reserve Bank, A statistical presentation of South Africa's national accounts for the period 1960 to 1974, Pretoria, March 1976 (3) Dept. of Statistics, South African Statistics 1976, Pretoria, 1977 (4) South African Reserve Bank, Quarterly Bulletin for December 1978 (5) Chenery and Syrquin, op. cit. (6) Dept. of Statistics, <u>Statistical Yearbook 1964</u>, Pretoria, 1965 (7) Dept. of Statistics, S.A. Statistics 1970, Pretoria, 1971 (8) Dept. of Statistics, S.A. Statistics 1974, Pretoria,1975 (9) S.A. Reserve Bank, A statistical presentation of South Africa's balance of payments for the period 1946 to 1970, Pretoria, 1971 (10) S.A. Reserve Bank, A statistical presentation of South Africa's balance of payments for the period 1956 to 1975, Pretoria, 1977 (11) C. Simkins, Measuring and Predicting Unemployment in South Africa, 1960-77 in C. Simkins and D. Clarke, Structural Unemployment in Southern Africa, Natal University Press, 1978.

Note: Primes denote predicted values of the variables in question.

-19-I Gross National Product and Population

GDP at	Less net	GNP	GDP	GNP at	GNP at	Population	GNP per
factor cost	factor payments	at factor cost	deflator	1963 factor	1964 factor	<u>(mill)</u>	<u>capita (\$)</u>
	to rest of			cost(R)	cost(\$)		

		world			·			
1950	2549 ¹	146 2	2403	74,1 ⁵	3243	4612	13,59 ⁸	339
1	2772	166	2606	76,7	3398	4832	13,89	348
2	2976	177	2799	79,6	3516	5000	14,21	352
3	3373	182	3191	85,8	3719	5289	14,54	364
4	3624	198	3426	87,1	3933	5593	14,87	376
5	3819	215	3604	87,7	4109	5843	15,22	384
6	4123	240	3883	90,0	4314	6135	15,58	394
7	4342	230	4112	91,5	4494	6391	15,95	401
8	4445	230	4215	91,7	4597	6537	16,32	401
9	4694	242	4452	93,3	4772	6786	16,73	406
960	4905 ³	247 4	4718	94,8	4977	7078	17,12 ⁹	413
1/	5256	269	4987	96,3	5179	7365	17,58	419
2	5602	246	5356	97,2	5510	7836	18,05	434
3	6224	250	5974	100,0	5974	8495	18,55	458
4	6816	273	6543	102,4	6390	9087	19,08	476
5	7474	303	7171	105,7	6784	9647	19,61	492
6	8109	324	7785	109,7	7097	10092	20,16	501
7	8981	349	8632	112,9	7646	10873	20,73	525
8	9643	394	9249	116,2	7960	11320	21,29	532
9	10735	445	10290	121,1	8497	12083	21,88	552
970	11949 6	509 ⁷	11440	125,9	9087	12923	22,47	575
1	13224	508	12716	133,4	9532	13555	23,03	589
2	14859	584	14275	145,7	9798	13934	23,67	589
3	18334	710	17624	171,6	10270	14605	24,31	601
4	22584	903	21681	192,1	11286	16050	24,94	644
Sou	rces:	1 (]) Tab	le7 2/	1) Table 1	3(2)	Table 4 4	(2) Table	1 ⁵ (3) n 21
		6 (4) pS-	72 7 (4) p S- 69	8 S.A. S	Statistics 1	972 pA - 9	(adjusted)

9 (3) p. 1.6 <u>Note</u>: Conversion factor from 1963 Rand to 1964 \$ = 10,720 x 1,0239 = 1,4221

II Foreign capital inflow and table of basic variables

-20**-**

Foreign capital

inflow (Rmill) Y N F T F' F(5 year moving average)

1950 182 ¹ 0,004 ⁴ 13,59 0,071 1 339 13,89 0,067 1 187 348 1 0,004 2 144 14,21 0,048 1 0,003 0,055 352 14,54 0,034 1 0,043 3 113 0,003 364 4 193 14,87 0,053 0,003 0,031 376 1 5 51 15,22 0,013 2 384 0,019 0,015 6 35 15,58 0,008 0,019 394 2 0,015 7 -47 15,95 -0,011 2 0,005 401 0,015 16,32 0,030 2 8 134 0,015 -0,004 401 9 -61 16,73 -0,013 2 0,014 -0,011 406 1960 -180 ² 17,12 -0,036 3 413 0,017 -0,012 1 -129 17,58 -0,025 3 -0,021 419 0,017 18,05 -0,016 3 2 -88 0,017 -0,019 434 3 -80 18,55 -0,013 3 0,016 -0,005 458 4 -41 19,08 -0,006 3 0,016 0,003 476 5 255 19,61 0,034 4 492 0,010 0,014 6 141 20,16 0,017 4 0,022 501 0,013 7 162 20,73 0,018 4 525 0,027 0,013 8 456 21,29 0,047 4 0,013 0,030 532 9 180 552 21,88 0,017 4 0,013 0,039 1970 582 ³ 22,47 0,049 4 575 0,041 0,012 1 818 23,03 0,062 4 589 0,031 0,012 2 449 23,67 0,030 4 0,036 589 0,012 24,31 -0,003 4 3 -46 601 0,012 4 899 24,94 0,040 4 644 0,012

Sources: ¹ (1) Table 15 ² (2) Table 11 ³ (4) p S-84 ⁴ (5) p.30.

III Gross domestic saving and investment

-21-

Gross domestic Gross domestic Date saving (R mill)investment S S' I I'

	Suving	(K IIIII) HIVES CIRCITO	-	<u> </u>		-
1950	516 ¹	555 ¹	0,202	0,169 ⁴	0,218	0,235 4
1	501	760	0,181	0,172	0,274	0,234
2	592	751	0,199	0,187	0,252	0,230
3	681	848	0,202	0,199	0,251	0,227
4	803	908	0,222	0,184	0,251	0,232
5	869	962	0,228	0,225	0,252	0,233
6	973	984	0,236	0,229	0,239	0,232
7	1059	1075	0,244	0,244	0,248	0,228
8	1012	1154	0,228	0,210	0,260	0,236
9	1177	1009	0,251	0,244	0,215	0,227
1960	1187 ²	1150 ²	0,239	0,269	0,232	0,228
1	1362	1147	0,259	0,259	0,218	0,229
2	1435	1118	0,256	0,252	0,200	0,231
3	1679	1513	0,270	0,250	0,243	0,233
4	1710	1758	0,251	0,245	0,258	0,234
5	1902	2198	0,254	0,219	0,294	0,249
6	2095	2096	0,258	0,232	0,258	0,246
7	2618	2799	0,292	0,232	0,312	0,246
8	2561	2483	0,266	0,208	0,257	0,251
9	2798	3043	0,261	0,232	0,283	0,245
1970	2834 ³	3702 ³	0,237	0,206	0,310	0,252
1	3158	4215	0,239	0,195	0,319	0,254
2	3931	4021	0,265	0,220	0,271	0,247
3	4969	5021	0,271	0,247	0,274	0,240
4	6034	7032	0,267	0,212	0,311	0,249

Sou

Sources: ¹ (1) Table 15 ² (2) Table 11 ³ (4) pS-84 ⁴ (5) p.200

IV Government revenue and taxes

-22-

Date	Govt. revenue	G	<u>G'</u>	Tax revenue	<u>T</u>	<u> </u>
1950	399 ¹	0,157	0,165 4	346 ¹	0,136	0,184 ⁵
1	474	0,171	0,168	409	0,148	0,186
2	521	0,175	0,172	476	0,160	0,189
3	593	0,176	0,176	547	0,162	0,192
4	642	0,177	0,178	557	0,154	0,192
5	675	0,177	0,185	577	0,151	0,204
6	710	0,172	0,188	636	0,154	0,206
7	760	0,175	0,192	674	0,155	0,210
8	773	0,174	0,189	690	0,155	0,205
9	838	0,179	0,195	751	0,160	0,210
1960	914 ²	0,184	0,194	785 ²	0,158	0,206
1	929	0,177	0,195	799	0,152	0,206
2	978	0,175	0,197	832	0,149	0,207
3	1257	0,202	0,202	1087	0,175	0,210
4	1377	0,202	0,205	1178	0,173	0,212
5	1505	0,201	0,205	1298	0,174	0,214
6	1614	0,199	0,209	1435	0,177	0,217
7	1951	0,217	0,214	1661	0,185	0,220
8	2103	0,218	0,212	1827	0,189	0,217
9	2492	0,232	0,219	2142	0,200	0,223
1970	2720 ³	0,228	0,220	2381 ³	0,199	0,222
l	2981	0,225	0,221	2631	0,199	0,223
2	3342	0,225	0,225	2945	0,198	0,226
3	4310	0,235	0,231	3656	0,199	0,231
4	5386	0,238	0,233	4600	0,204	0,231

ources:	¹ (1)	Table 17
	⁵ (5)	p 30

Sources: ¹(1) Table 17 ²(2) Table 13 ³(4) pS-85 ⁴(5) p 200 ⁵(5) p 30

For all races and all age groups from both the revenue and the loan accounts

Date	Rm	Ed	Ed' ⁵
1 9 50 ¹	85,0	0,033	0,023
1960	184,0	0,037	0,034
1963	230,0	0,037	0,035
1969 ²	421,7	0,039	0,042
1 97 0 ³	508,6	0,043	0,042
1971	603,7	0,046	0,042
1972 4	655,6	0,044	0,042
1973	789,0	0,043	0,042

Sources:

S.A. Institute of Race Relations, Annual Survey of Race Relations 1965
 S.A. Institute of Race Relations, Annual Survey of Race Relations 1972
 S.A. Institute of Race Relations, Annual Survey of Race Relations 1973
 S.A. Institute of Race Relations, Annual Survey of Race Relations 1973
 S.A. Institute of Race Relations, Annual Survey of Race Relations 1974
 (5) p 30

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} 1950 & 467649^1 & 37262 & 1 & 262354^2 & 6155 & 2 & 779366 & 3 & 1552788 & 33,70 & 4,58 & 0,339 & 0,659 \\ 1 & 498315 & 38667 & 272168 & 7533 & 799151 & 1615834 & 33,78 & 4,69 & 0,345 & 0,659 \\ 2 & 515591 & 39791 & 268743 & 5851 & 84.8912 & 1695788 & 33,86 & 4,81 & 0,353 & 0,613 & 0,633 \\ 3 & 536058 & 39846 & 501730 & 7769 & 888431 & 1773834 & 33,94 & 4,93 & 0,366 & 0,613 & 0,633 \\ 4 & 555996 & 40545 & 318710 & 7271 & 956867 & 1889389 & 34,03 & 5,06 & 0,373 & 0,654 & 0,626 \\ 5 & 574136 & 41332 & 349245 & 6254 & & & & & & & & & & & & & & & & & & &$	<u>Whites</u> Public Private	<u>Coloureds/Asians</u> Africans <u>Public</u> <u>Private</u>	<u>Total</u>	Populatio Percent	<u>n 5-19</u> <u>No.(mill</u>)	E	<u>E'</u> 7	<u>E'</u> (5 yr. mov	ving av.)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{7}{10} \frac{602465}{602465} \frac{42670}{42517} \frac{3619976}{42517} \frac{6583}{3319132} \frac{2385308}{2385308} \frac{34,36}{34,36} \frac{5,61}{5,61} \frac{0,425}{0,425} \frac{0,561}{0,590} \frac{0,590}{0,590} \frac{1}{9}$ $\frac{9}{9} \frac{630509}{635500} \frac{45500}{402594} \frac{425944}{6874} \frac{1499844}{2625148} \frac{2625148}{34,52} \frac{34,24}{5,91} \frac{0,444}{0,543} \frac{0,590}{0,567} \frac{1}{0,587} \frac{1}{1} \frac{1}{0,5827} \frac{1}{1} \frac{1}{0,5827} \frac{1}{1,5883} \frac{1}{7} \frac{1}{1} \frac{1}{1} \frac{1}{0,5827} \frac{1}{1} \frac{1}{0,453} \frac{1}{0,567} \frac{1}{0,587} \frac{1}{1} \frac{1}{0,567} \frac{1}{1,508} \frac{1}{0,587} \frac{1}{1} \frac{1}{0,567} \frac{1}{1,508} \frac{1}{0,587} \frac{1}{1} \frac{1}{0,567} \frac{1}{1,508} \frac{1}{0,587} \frac{1}{1,508} \frac{1}{0,557} \frac{1}{0,587} \frac{1}{1,508} \frac{1}{0,557} \frac{1}{0,587} \frac{1}{1,508} \frac{1}{0,557} \frac{1}{0,587} \frac{1}{1,508} \frac{1}{0,567} \frac{1}{0,567} \frac{1}{0,566} \frac{1}{0,599} \frac{1}{0,567} \frac{1}{0,567} \frac{1}{0,587} \frac{1}{1,508} \frac{1}{0,567} \frac{1}{0,574} \frac{1}{0,567} \frac{1}{0,567} \frac{1}{0,567} \frac{1}{0,567} \frac{1}{0,567} \frac{1}{0,567} \frac{1}{0,567} \frac{1}{0,567} \frac{1}{0,574} \frac{1}{0,574} \frac{1}{0,574} \frac{1}{0,577} \frac{1}{0,566} \frac{1}{0,567} \frac{1}{0,773} \frac{1}{0,566} \frac{1}{0,574} \frac{1}{0,773} \frac{1}{0,566} \frac{1}{0,574} \frac{1}{0,773} \frac{1}{0,566} \frac{1}{0,574} \frac{1}{0,773} \frac{1}{0,566} \frac{1}{0,574} \frac{1}{0,773} \frac{1}{0,574} \frac{1}{0,774} \frac{1}{0,773} \frac{1}{0,776} \frac{1}{0,776} \frac{1}{0,770} \frac{1}{0,785} \frac{1}{0,776} \frac{1}{0,770} \frac{1}{0,785} \frac{1}{0,776} \frac{1}{0,770} \frac{1}{0,785} \frac{1}{0,774} \frac{1}{0,770} \frac{1}{0,776} \frac{1}{0,774} \frac{1}{0,770} \frac{1}{0,785} \frac{1}{0,774$	$\frac{7}{9} \frac{602465}{9} \frac{42270}{4217} \frac{356976}{31190} \frac{6583}{591} \frac{1339132}{1339132} \frac{2385308}{242570} \frac{34,44}{5,76} \frac{5,61}{0,425} \frac{0,425}{0,661} \frac{0,587}{0,590} \frac{0,591}{0,590} \frac{1}{9} \frac{6}{9} \frac{6}{6} \frac{6}{6} \frac{6}{6} \frac{6}{6} \frac{1}{9} \frac{1}{0,425} \frac{1}{0,444} \frac{0,543}{0,590} \frac{0,590}{0,590} \frac{1}{1} \frac{1}{6} \frac{6}{6} \frac{6}{6} \frac{6}{6} \frac{1}{5} \frac{1}{0,425} \frac{1}{0,444} \frac{0,543}{0,567} \frac{0,580}{0,567} \frac{1}{0,567} \frac{1}{0,578} \frac$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	262354 ² 6155 ² 779368 ³ 272168 7533 799151 288743 5851 845812 301730 7769 888431 318710 7271 966867 333311 7076 1013910 349245 6254	1552788 1615834 1695788 1773834 1889389 1970268	33,70 33,78 33,86 33,94 34,03 34,11	4,58 4,69 4,81 4,93 5,06 5,19	0,339 0,345 0,353 0,360 0,373 0,380	0,659 0,659 0,630 0,613 0,654 0,618 0,616	0,643 0,635 0,626 0,618 0,627	
6 732283 49136 564896 5740 2104643 3456698 35,83 7,22 0,479 0,712 0,716 7 744700 49056 581452 6103 2233504 3614815 36,05 7,47 0,484 0,724 0,737 8 759497 50956 613841 5508 2388081 3817883 36,27 7,72 0,495 0,778 0,749 9 772175 49224 653888 4730 2542365 4022382 36,49 7,98 0,504 0,734 0,772 1970 817238 47169 674474 4559 2737450 4280890 36,71 8,25 0,519 0,798 0,782 1830136 47163 704743 4289 2916519 4502850 36,71 8,45 0,533 0,827 0,770 2 840216 45927 733671 4167 3079507 4703488 36,71 8,69 0,541 0,773 0,785 3 852074 44768 763168 3781 3286499 495029	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 602465 42670 8 614178 44217 9 630509 45500 1960 645546 46890 1 658271 47087 2 671798 46822 3 681663 48684 4 698383 49905 5 714318 49754	366976 6583 381190 6591 1339132 403218 6404 1406939 425994 6874 1499844 449444 6912 1603196 475883 7004 1678388 500228 6576 1764150 532718 6582 1830403 542820 6783 1950558	2385308 2492570 2625148 2764910 2879895 3001301 3117991 3264233	34,36 34,44 34,52 34,74 34,96 35,18 35,40 35,62	5,61 5,76 5,91 6,11 6,31 6,53 6,75 6,99	0,425 0,433 0,444 0,453 0,456 0,460 0,462 0,467	0,587 0,661 0,590 0,543 0,567 0,591 0,607 0,628 0,737	0,514 0,599 0,590 0,580 0,587 0,626 0,655 0,682	-24-
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\frac{4 \ 859587 \ 43902 \ 796276 \ 3486261 \ 5186026 \ 36,71 \ 9,16 \ 0,566 \ 0,808}{N0te: \frac{4 \ Population \ 5-19}{1951: \ + 27.8 \times 2641689 \ + 36.6 \ x1103016 \ + \ 39.9 \ x366664 \ + \ 35.0 \ x8560083 \ = \ 33,78 \ 12671452 \ 126$	6 732283 49136 7 744700 49056 8 759497 50956 9 772175 49224 1970 817238 47169 1 830136 47163 2 840216 45927 3 852074 44768	5648965740210464358145261032233504613841550823880816538884730254236567447445592737450704743428929165197336714167307950776316837813286499	3456698 3614815 3817883 4022382 4280890 4502850 4703488 4950290	35,83 36,05 36,27 36,49 36,71 36,71 36,71 36,71	7,22 7,47 7,72 7,98 8,25 8,45 8,69 8,92	0,479 0,484 0,495 0,504 0,519 0,533 0,541 0,565	0,712 0,724 0,778 0,734 0,798 0,827 0,773 0,720	0,716 0,737 0,749 0,772 0,782 0,770 0,785	

-25-VII <u>Government and private consumption</u> $\underline{C} \quad \underline{C} \quad \underline{C'} \quad \underline{G} \quad \underline{G'} \quad \underline{G'} \quad \underline{C'} \quad \underline{C'} \quad \underline{G'} \quad \underline{G'} \quad \underline{G'} \quad \underline{C'} \quad \underline$

							average)	average)
1950	1740 ¹	0,683	0,677 7	328 4	0,129	0,155 7		
1	1960	0,707	0,675	352	0,127	0,154		
2	2175	0,731	0,667	420	0,141	0,149	0,151	0,669
3	2348	0,696	0,660	457	0,135	0,145	0,146	0,656
4	2479	0,684	0,667	476	0,131	0,151	0,140	0,643
5	2662	0,697	0,611	501	0,131	0,129	0,135	0,629
6	2775	0,673	0,608	540	0,131	0,128	0,133	0,621
7	2957	0,681	0,600	557	0,128	0,123	0,127	0,607
8	3095	0,696	0,618	590	0,133	0,134	0,124	0,608
9	3213	0,684	0,600	623	0,133	0,122	0,122	0,611
1960	3362 ²	0,677	0,616	655 ⁵	0,132	0,115	0,122	0,616
1	3480	0,662	0,621	702	0,134	0,118	0,120	0,617
2	3663	0,654	0,624	815	0,145	0,121	0,120	0,622
3	3969	0,638	0,623	898	0,144	0,123	0,126	0,625
4	4431	0,650	0,625	1007	0,148	0,125	0,130	0,626
5	4764	0,637	0,633	1125	0,151	0,142	0,133	0,626
6	5174	0,638	0,626	1256	0,155	0,137	0,138	0,629
7	5599	0,623	0,625	1355	0,151	0,138	0,141	0,629
8	6165	0,639	0,638	1484	0,154	0,147	0,142	0,630
9	6893	0,642	0,624	1701	0,158	0,139	0,145	0,633
1970	7714 ³	0,646	0,637	2005 ⁶	0,168	0,149	0,146	0,634
1	8716	0,659	0,642	2389	0,181	0,153	0,144	0,629
2	9702	0,653	0,629	2548	0,171	0,143	0,146	0,631
3	11477	0,626	0,615	2906	0,159	0,135		
4	13557	0,600	0,631	3680	0,163	0,148		

p.204	

.

-26-VIII <u>Food consumption</u> (incl. beverages and tobacco)

Food consumption Food as % of GDP FD'

	FOOD CONSUMPTION	FOOU as 6 OF GDF		
1950	602 ¹	0,236	0,306 ⁴	
1	669	0,241	0,303	
2	806	0,271	0,295	
3	864	0,256	0,288	
4	892	0,246	0,291	
5	946	0,248	0,270	
6	1000	0,243	0,266	
7	1053	0,243	0,258	
8	1102	0,248	0,272	
9	1144	0,244	0,257	
1960	1183 ²	0,238	0,237	
٦	1249	0,238	0,239	
2	1299	0,232	0,240	
3	1380	0,222	0,236	
4	1521	0,223	0,236	
5	1675	0,224	0,236	
6	1806	0,223	0,228	
7	1942	0,216	0,225	
8	2110	0,219	0,234	
9	2255	0,210	0,221	
1970	2500 ³	0,209	0,229	
1	2745	0,208	0,232	
2	2953	0,199	0,221	
3	3526	0,192	0,209	
4	4253	0,188	0,218	
Sources:	¹ (1) Table 8	² (2) Table 5	³ (4) pS-73	⁴ (5) p 38

1	IX		Value a	dded by s	ector						
	<u>SIC 1</u>	<u>SIC 2</u>	PRI	Pr	Pr'	Pr'5yr. moving average	<u>SIC 3</u>	<u>51C 5</u>	CHI	In	<u>In'</u>
1950 1	154	338	792	0,311	C,238 -		470	80	550	0,215	0,293 -
1	513	305	879	0,317	0,237		511	90	601	0,217	0,30)
2	483	371	854	0,287	0,245	0,241	572	116	683	0,231	0,297
3	574	365	939	0,273	0,250	0,244	598	112	813	0,240	0,298
4	593	399	992	0,274	C,235	0,248	760	105	855	0,239	0,305
5	578	470	1048	0,274	C,254	C.251	780	109	889	0,233	0,291
6	519	531	1150	0,279	C,254	C 249	843	123	965	0,234	0,292
7	520	572	1192	0,275	C,263	0,254	875	134	1009	0,232	0,290
8	561	576	1137	0,256	C,239	0,258	912	149	1061	0,2:9	0,297
9	589	630	1219	0,260	C,262	0,250	9/2	155	1097	0,234	0,291
1960 2	501	684	1285	0,259	C,272	0,258	1023	152	1175	0,237	0,281
1	664	709	1373	0,261	C,264	0,260	1111	147	1258	0,239	U,285
?	682	742	1424	0,254	C,254	0,255	1191	157	1343	C.241	0,293
3	753	738	154	0.248	0,245	0,240	1363	183	15-6	C 243	0,295
,	711	970	1500	n 222	0 238	2 229	15/2	237	1779	C 261	0.307

-27-

,317
215
,313
,319
,327
,324
,334
,339
,333
,323
,343

Sources: 1 (1) Table 7 2 (2) Table 4 3 (4) p S-72 4 (5) p33

	510.4	STC 7	11:	U	0.	SIC 6	S10 8	SIC 9	Govt.	Others	SER	Sr	Sr!
	016 1		<u></u>	-	-		_						
1950 1	44	235	280	0,110	0,078 -	375	202	47	. 92	1(3	2 97	0,35	0,420
1	47	263	310	0,112	0,0/9	374	23	4	Z15	115	362	1,35	1,4 1
2	51	290	331	0,111	0,079	416	254	55	727	13	1103	3.371	2,412
3	62	309	371	0,1'0	0,0/9	520	265	60	248	133	1253	3.371	0,408
Ŧ	71	350	42	0,1'é	0,080	55C	2.5	65	184	144	34h	4,341	0,416
5	83	373	456	0,1'9	0,033	583	31	63	3)]	15	-26	3,373	9,19
ъ	50	390	480	0,116	0,083	624	:35	23	3:8	167	327	0.37C	
7	97	415	512	311, 3	0,083	654	370	11	354	174	629	0.315	0,471
6	105	436	54	0,122	0,034	6;4	352	52	379	175	1406	0,334	0,4 5
9	1.4	459	583	0,124	0,083	634	431	23	4 Y u	167	1795	0,332	0,400
1960 2	123	506	629	0,127	0,085	302	453	52	421	157	1077	J.370	0,397
1	134	52	646	0,123	0,036	732	45)	<u>99</u>	450	205	1,60	J.377	1,
2	144	554	638	0,125	0,036	804	520	107	133	222	2134	0,331	0,406
3	157	63	770	0,124	0,087	905	585	115	500	232	2368	69000	6,432
4	159	677	546	C•,124	0,098	1000	:49	12!	511	24-	2501	0,352	0,41
5	181	2°C	53	C,1 9	0,090	1095	715	136	624	265	2327	0,330	7,432
6	200	756	956	0,1'8	0,090	1154	75)	151	722	284	3101	0,332	0,425
1	223	361	1:88	[,12]	0,09	1500	C83	165	.93	:02	3-39	C,244	1,821
3	252	910	1 62	0,121	0,092	1464	1.1	183	283	323	366.	C.401	0,437
9	211	991	1256	51,0	9, 392	1021	1150	200	370	343	4 209	J, 13.	0,427
1310 -	53.	1154	140	1,120	0,090	1/91	14.4	220	1 52	313	515	0,412	3,452
1	351	1339	Iteu	0,120	0,094	1 542	1:61	257	1357	435	556Z	0,428	3,444
2	-09	1357	1120	0,121	1.033	2112	1697	222	15)论	4 <u>CE</u>	b:4 8	3.427	3,43:
5	478	1/20	224	0,122	7,082	21 0	2175	316	1.35	6/6	7568	3.413	3,421
4	251	clut.	2064	U, I 4	1,035	55 C	264.1	.62	213	593	9795	0,433	2,437

-29-X Exports and imports

Exports Imports GDP X X' M M' X" M"

					(large)		(large)	(small b	alanced)
1950 ¹	828	727	2662	0,311	0,099 4	0,273	0,172 4	0,243	0,308
1	987	1090	2909	0,339	0,102	0,375	0,170	0,245	0,306
2	1004	1003	3116	0,322	0,116	0,322	0,166	0,254	0,296
3	1022	1023	3537	0,289	0,127	0,289	0,162	0,261	0,289
4	1125	1049	3808	0,295	0,111	0,275	0,165	0,254	0,301
5	1253	1152	4025	0,311	0,141	0,286	0,156	0,264	0,271
6	1382	1175	4339	0,319	0,144	0,271	0,154	0,267	J,269
7	1500	1305	4583	0,327	0,159	0,285	0,149	0,276	0,259
8	1387	1319	4711	0,294	0,125	0,280	0,157	0,259	0,283
9	1560	1168	4993	0,312	0,159	0,234	0,147	0,277	0,258
1960 ²	1595	1304	5286	0,302	0,185	0,247	0,149	0,286	0,244
1	1692	1195	5568	0,304	0,175	0,215	0,150	0,281	0,250
2	1783	1229	5937	0,300	0,167	0,207	0,151	0,279	0,257
3	1921	1518	6601	0,291	0,163	0,230	0,151	0,279	0,260
4	2047	1840	7253	0,282	0,157	0,254	0,151	0,278	0,265
5	2091	2107	7923	0,264	0,130	0,266	0,166	0,274	0,301
6	2261	1970	8591	0,263	0,143	0,229	0,161	0,282	0,292
7	2434	2307	9523	0,256	0,142	0,242	0,161	0,283	0,294
8	2668	2268	10255	0,260	0,117	0,221	0,166	0,271	0,311
9	2731	2592	11535	0,237	0,141	0,225	0,159	0,285	0,295
1970 ³	2757	3165	12834	0,215	0,114	0,247	0,165	0,272	0,315
1	3019	3609	14214	0,212	0,103	0,254	0,167	0,268	0,323
2	3981	3534	15927	0,250	0,128	0,222	0,159	0,281	0,305
3	5015	4371	19577	0,256	0,153	0,223	0,152	0,296	0,286
4	6656	6835	23973	0,278	0,118	0,285	0,160	0,280	0,313

Sources: 1 (1) Table 2 2 (2) Table 2 3 (4) pS-70 4 (5) p.204.

	CI Conpos	ttion of r	-jerts										
Late	t of neru and, Exports Industrial	Yerchand. exports	<u>Cclc</u>	Princip	Inductrial exports	Services e-mrts	<u>[012]</u>	<u>PX</u>	<u>PX'</u>	<u></u>	<u>IX'</u>	<u>3x</u>	<u>5%'</u>
1950 1 2 1 4 5 6 7 6 5 7 7 6 5 7 7 6 5 7 7 6 5 7 7 7 7	7,301 7.284 7,302 0,325 7,432 0,432 0,457 0,457 0,456 0,456 0,456 0,456 0,456	429 6 575 575 592 560 737 319 388 775 879 381 7 381 7 388 775 879 381 7 381 7 381 7 361 7 361 7 1074 1067 1216	294 300 306 329 366 425 440 503 576 775 765	554 712 720 720 755 857 933 851 957 982 1054 1148 1254 1304 1253		115 5 130 146 146 162 178 199 215 205 217 224 230 247 257 301 314 345	835 025 044 151 281 532 421 535 729 827 959 2111 2155 2330	C 199 C 178 C 197 D 102 C 195 C 195 C 194 C 194 C 173 C 196 C 146	C,C29 C,C28 C,C28 C,C28 C,104 C,C24 C,C21 C,C21 C,C24 C,C43 C,C24	0,082 0,074 0,083 0,079 0,078 0,071 0,058 0,069 0,069 0,066 0,075	0,078 0,043 0,038 0,038 0,038 0,042 0,042 0,050 0,049	0,043 0,044 0,046 0,040 0,042 0,043 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0,046 0,045 0,0000000000	0,037 0,033 0,040 0,040 0,039 0,039 0,040
7 2	0,571 0,567	1 323 1 51 3	775 769	1343 1724	858	480	2752	C,134	0.028	30,0	0,155	0,045	C,034
5	0,609	1.185	647	1428	914	517	2849	0.119	C.C48	0.075	C.052	0,743	0.041
310	0,636	1453 6	837 6	1365	924	581 3	2871	0,102	C, 123	0,059	C,U58	0,343	0,033
1	0,634	1551	536	1493	See	577	21=0	0,100	0,012	0,066	0,050	0.046	0,031
2	0,611 =	2216	1161	2023	1354	76?	4139	E.172	0,034	0.022	C.355	0,046	0,035
3	0.617	2517	1770	2734	155	962	5249	3,133	0,057	0,076	C,053	0,047	0,043
4	0,658	3164	2565	3647	2052	1114	E843	0,148	0.023	0.025	0,060	0.945	0,035

Sources: 1 (6) pl-7 1 (6) pl-13 3 (7: pl-11 4 (8) 515.11 7 (3) 5 16-11 6 (9) Table 1 7 (10) Table 1 7 (4) p5 57 3 (5) pl.234.

XII Employment (thousand)

-31-

	Primary	Industry	Services	Total	PE%	PE '	IE%	IE'	SE%	SE'
1960	2465	839	2229	5533 1	44,6	0,455 ²	15,2	0,243 ²	40,3	0,329 ²
1	2482	856	2266	5604	44,3	0,449	15,3	0,246	40,4	0,332
2	2470	898	2323	.5691	43,4	0,440	15,8	0,252	40,8	0,336
3	2474	951	2406	5831	42,4	0,429	16,3	0,258	41,3	0,341
4	2493	1064	2469	6026	41,4	0,420	17,7	0,263	41,0	0,346
5	2441	1172	2531	6]44	39,2	0,402	19,1	0,272	41,2	0,354
6	2533	1231	2632	6396	39,6	0,404	19,2	0,272	41,2	0,354
7	2608	1293	2688	6589	39,6	0,394	19,6	0,277	40,8	0,358
8	2459	1324	2759	6542	37,6	0,383	20,2	0,283	42,2	0,364
9	2552	1405	2855	6812	37,5	0,385	20,6	0,282	41,9	0,363
1970	2438	1496	2922	6856	35,6	0,368	21,8	0,291	42,6	0,372
1	2492	1563	3007	7062	35,3	0,359	22,1	0,296	42,6	0,376
2	2494	1585	3096	7175	34,8	0,369	22,1	0,291	43,1	0,372
3	2566	1664	3203	7433	34,5	0,374	22,4	0,288	43,1	0,369
4	2504	1765	3317	7586	33,0	0,348	23,3	0,301	43,7	0,382

Sources: ¹ (11) Table 18 ² (5) p. 49.

-32-XIII Urbanisation Ur⁺ 4 Urban Rural Total

000 7 275	000 12 671	000 0,426 0,	,463
394 507	920 3 078	314	
9 182 477	616 1 506	798	
529 79	942 477	471	
098 7 444	427 10 915	525	
8 203 8 509	905 15 978	108 0,467 0,	,490
) 293 11 384	035 21 794	328 0,478 0,	564
	17 000 7 275 10 394 507 19 182 477 17 529 79 17 529 79 17 098 7 444 58 203 8 509 0 293 11 384	17 000 7 275 000 12 671 10 394 507''920 3 078 19 182 477 616 1 506 17 529 79 942 477 11 098 7 444 427 10 915 58 203 8 509 905 15 978 0 293 11 384 035 21 794	17 000 7 275 000 12 671 000 0,426 0, 10 394 507''920 3 078 314 19 182 477 616 1 506 798 97 529 79 942 477 471 '1 098 7 444 427 10 915 525

Sources:

,

1951 Population Census
 1960 Population Census vol. 7 no.1.

.

3 1970 Population Census rpt. 02-05-10

· ·

4 (5) p. 49.

-33-XIV Birth and Death rates

1960 Birth rate ¹ Weight ² BR' ³ Death rate ¹ DR'

A11	35,1	1,000	0,264	10,4	0,101
Africans	37,7	0,709		10,3	
Asians	33,3	0,029		6,9	
Coloureds	36,3	0,092		14,1	
Whites	23,5	0,171		9,1	
1970	Birth rate ¹	Weight ²	BR '	Death rate 1	DR
A11	37,6	1,000	0,316	13,4	0,121
Africans	40,1	0,705		14,5	
Asians	29,7	0,028		7,6	
Coloureds	46,4	0,088		15,6	
Whites	24,8	0,179		8,7	

Sources: ¹ S. Trengove-Jones, A study of health and health services in S.A. since 1960, unpublished M. Com. Dissertation, University of Natal, Pietermaritzburg 1977.

² Statistical News Release P.11 of 19.12.78.

XV Income Distribution

		Actual 1	'Expected' ²
1965:	Highest 20%	0,580	0,545
	Lowest 40%	0,062	0,113

Sources:	1	(5) p.198
	2	(5) p.49

Appendix B

Construction of the UNRISD profile for South Africa

-34 -

It has been possible to construct 'raw' scores for each of the eighteen core UNRISD indicators in South Africa for 1960, 1965, 1970 and 1975. In some cases, the scores were quite straightforward to compute; in others, various assumptions had to be made in one or two instances these were heroic. Chart 25 of the UNRISD book provides the level of each raw score corresponding to each decile; percentiles were computed by linear interpolation between the deciles lying on either side of the score.

In order to enable the reader to judge the reliability of the estimates of the values of the various social indicators, notes are provided on sources and computation methods used in each case:

General: (a) Population: The size and the age distribution of the population are required for most indicators. The most up-to-date official size estimates for the four years under consideration are contained in Statistical News Release P 11.1 Mid-year population estimates, 5.12.77. The age distributions have to be built up from the race-sex-age distributions which are available for 1960, 1970 and 1975. The sources used are as follows:

1960: (i) Whites - the 1960 population census results as summarised on pA - 27 of <u>S.A. Statistics, 1968</u>

(ii) Coloureds and Asians - J.L. Sadie, Demographic data pertaining to the Non-white population of South Africa, <u>South African Journal of Economics</u>, vol. 38, no. 1, Mar. 1970.

(iii) Africans - J.L. Sadie, Demographic data pertaining to the Non-white population of South Africa, <u>South African Journal of Economics</u>, vol. 38. no.2, June 1970.

1970 and 1975:

(i) Whites, Coloureds, Asians and 'domestic' Africans - Department of Statistics, Population projections for the Republic of South Africa, 1970 - 2020, Report 02-06-01, Pretoria, 1976. White figures were taken from the 25 000 immigrants per year table

(ii) 'foreign' Africans - Department of Statistics, 1970 Population census, Sample tabulations Bantu, Report 02-02-02, Pretoria. The 1975 age distribution for this group was assumed to be the same as in 1970.

The main results of the calculations are shown in Table 1. The 1965 age distribution is obtained by taking the average of the relevant 1960 and 1970 entries. Sometimes corrected population estimates are required counting people in the age groups <15, 15-64, \geq 65 as 1/3:1:1 respectively (indicators 7,8,9), $\frac{1}{2}$:1:1 (indicator 6) or $\frac{1}{2}$:1:2/3 (indicators 3,13,14,15,17 and GNP) or by considering only people in the age group 5-19 (indicator 4 or in the age group 15-19 (indicator 5).

	1960		1965		1970		1975		
	М	F	M 1	F	М	F	М	F	
Percentage population							1		
White	8,9	9,0	8,7	8,7	8,5	8,5	8,3	8,3	
Coloured	4,4	4,4	4,5	4,5	4,6	4,7	4,5	4,6	
Asian	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	
African	35,6	35,0	35,9	34,8	36,2	34,6	36,2	35,2	
< 15	39	39,7		40,3		40,8		39,6	
15-64	56	,8	56	5,1	55	,3	5	5,5	
> 65	3	,5	3	3,7	4	,0		3,9	
5-19 15-19 Total population	34	34,0 9,4		35,4 9,7		36,8 10,1		35,7 9,8	
(thousands)	17 1	22	19 6	507	22 4	65	25	466	
1/3:1:1	12 5	590	14 3	45	16 3	61	18	743	
1:1:1	13 7	'15			17 8	82			
12:1:2/3	13 5	525	15 4	19	175	87	20	093	
5-19 15-19	5 8	121 109	69	941 02	8 2	67 269	92	091 496	

(b) <u>Prices</u>: Current prices in rand were converted to constant 1960 prices by using the consumer price index and then multiplied by 1,4 to obtain prices in 1960 US dollars

1. Life expectancy: Figures for life expectancy at birth over five year periods from 1955-60 (except Whites) to 1975-80 were obtained from J.L. Sadie, <u>Projections</u> of the South African population 1970 - 2020, Industrial Development Corporation, Johannesburg, 1972. Figures were obtained for each year by averaging the adjacent five-year figures. The 1960-1965 figure for Whites was used as the 1960 figure. Disaggregated figures by race and sex were aggregated by finding a weighted mean, the weights being the fractions of the population.

2. <u>Population in localities of 20 000 plus</u>: Percentages were found for 1960 and 1970 by working through the 'urban' area figures by magisterial district in the 1960 and 1970 population censuses (Tables 6 of vol.1 and 2 of report 02-05-10 respectively), adding populations in towns and cities of more than 20 000 and dividing the totals by total enumerated population. Raw scores were not calculated for 1965 and 1975, but the percentiles were respectively interpolated and extrapolated.

3. <u>Per capita animal protein consumption</u>: Figures for total <u>consumption</u> of red meat were taken from the <u>1978</u> Abstract of Agricultural Statistics (table 44) and added to figures for total <u>production</u> of poultry (taken from table 35 of the same source - poultry consumption figures are not available). The totals were divided by the appropriate population figures. Total quantities consumed were taken as the mean of those in years adjacent to the year under consideration - thus the 1960 figure was the mean of the 1959/60 and 1960/61 totals etc.

-36-

4 and 5. <u>Combined primary and secondary enrolment ratio and vocational enrolment ratio</u>: For whites, school and technical college enrolments are given under five headings in S.A. Statistics 1976 (p.5.4): - colleges and institutes for technical and advanced technical training - correspondence colleges and private vocational schools - public schools - private schools

- special schools.

,

To complicate matters, secondary vocational school enrolments were included in special schools up to 1969 and in public schools from 1970. Also, not all five columns have entries for each of the years under consideration.

To split these figures up into academic primary and secondary on the one hand and vocational on the other, one adopts the following devices:

(i) all enrolments at colleges and institutes for technical and advanced technical training are counted as vocational and all enrolments at private schools are counted as academic

(ii) 80% of the enrolments at correspondence schools and private vocational schools are counted as academic and the rest as vocational.

(iii) to get an idea of the number of students at secondary vocational schools, compare the 1969 and 1970 public and special school figures:

	Public		Spec	ial	Sub-total		
	No.	%	No.	%	No.	%	
1969	807 653	95,61	35 4.78	4,39	843 131	100	
1970	821 907	99,43	4 669	0,57	826 576	100	

% 1970 public schools _ <u>1969 public %</u> academic _ <u>1970 public %</u> = 96,2%

% 1969 special schools _	1969 special % - 1970 special %	- 07%
vocational –	1969 special %	- 07.5

Accordingly, all public school enrolments in 1960 and 1965 were counted as academic and 96,2% of these were so counted in 1970 and 1975. 87% of the special school enrolments in 1960 and 1965 were counted as vocational and 3,8% of the public school enrolments were so counted in 1970 and 1975.

(iv) Over the period 1969-1975 enrolment at correspondence colleges and private vocational colleges were an average of 4,2% of enrolments at public, private and special schools. Figures for correspondence and private voc-ational schools in 1960 and 1965 are obtained by applying this percentage to the appropriate totals in these years

(v) In 1970, enrolments at colleges and institutes for technical and advan-ced education were 2,07 times the total of vocational enrolments obtained from other columns. This factor is applied to the relevant totals in 1960, 1965 and 1975 to generate estimates under this head.

-37-For Coloureds and Asians, there are headings similar to those for Whites, except 'special schools', which is replaced by 'vocational and special

schools' (S.A. Statistics 1976 p.5-6) The splitting up job is a little easier: Academic primary and secondary enrolments are taken as 80% of correspondence and private vocational school enrolments plus all public and private school enrolments; vocational enrolments are taken as 20% of correspondence and private vocational school enrolments plus 90% of vocational and special school enrolments plus enrolments at colleges for technical and advanced technical training. As for Whites, only 1970 figures are available; other figures are generated as already described – this time the appropriate factor is 2,46.

For Africans, figures are readily obtained; academic primary and secondary enrolments are taken as enrolments under 'schools': mainly academic' and vocational enrolments as enrolments under 'schools : mainly technical'.

6. Average number of persons per room

The values for this indicator are the least reliable in the whole series. The problem is that statistics are available only for Whites, Coloureds and Asians in urban areas from the 1960 Population Census. The census definition of 'rooms' is used i.e. bed-and other living rooms. The assumptions are made that dwelling densities are similar for urban and rural areas and that Africans are housed at the same density as Coloureds. Then densities for urban Whites, Coloureds and Asians respectively can be calculated by multiplying the average number of rooms per house and flat by the number of houses and flats to get the total number of rooms and then dividing this number into the urban dwellers. All the figures necessary are obtained from the Review section of Dept. of Statistics, Population census 1970 : dwellings, report 02-03-04, Pretoria. An overall average was obtained by weighting the White average by the proportion of Whites in the population, the Asian average by the Asian proportion and the Coloured average by the Coloured and African proportion.

For 1960, the number of dwellings and the urban population for Whites, Coloureds and Asians are available so, if one assumes average house sizes to be the same in 1960 and 1970, a 1960 figure can be estimated.

No 'raw scores' were calculated for 1965 and 1975 but percentiles were obtained by linear interpolation and extrapolation.

7. Newspapers: Average daily circulation statistics of major urban daily newspapers are available for 1961 to 1974 at p 18.8 of the S.A. Statistics 1976. These are divided by the appropriate population statistics. The 1961 result is used for 1960 and the 1974 result for 1975.

8. Telephones: The total number of telephones in use is recorded for each year from 1961 to 1975 at p 18.6 of S.A. Statistics, 1976. These numbers are divided by the appropriate population statistics. The 1961 result is used for 1960.

9. Radios: The total number of radio listeners' licences issued each year from 1960 to 1975 is recorded at p 18.3 of S.A. Statistics 1976. This number will be considerably less than the number of radios in use, since many listeners will have more than one radio on the same licence and some listeners will not have licences at all. Accordingly, the number of radios is assumed to be double the number of licences; these numbers are divided by the appropriate population statistics.

10. Percentage of the economically active population in electricity, gas, water, sanitary services, transport, storage and communications:

Estimates of the economically active population for each of the years under consideration are provided in table 9 of C. Simkins, Measuring and predicting unemployment in South Africa, 1960 to 1977 in C. Simkins and D. Clarke, <u>Structural unemployment in Southern Africa</u>, Natal University Press, 1978. Employment in electricity, gas and water is listed under SIC 4 and in trans-port, storage and communication under SIC 7 in table 18; the appropriate percentages are easily calculated. The results are likely to be slight underestimates since some water and all sanitary employment will appear under SIC 9, but the degree of underestimation is impossible to assess and no adjustment is made.

11 and 12. Agricultural production per male agricultural labourer and

Percentage adult male labour in agriculture:

Estimates of the adult male labour force in agriculture are obtained by adjusting the employment figures in the 1960 and 1970 Population Censuses adjusting the employment figures in the 1960 and 1970 Population Censuses (vol. 6. table 2 and report 02-05-09 table 3, respectively) by the correction factors (for undernumeration) calculated in note 33 in Simkins op. cit. It turns out that 67,8% of the 'agricultural labour supply' as calculated in table 22 was male in 1960 and 65,9% in 1970. Linear inter-polation and extrapolation yield figures of 66,9% and 64,9% in 1965 and 1975 and these are applied to the 1965 and 1975 totals respectively. Figures thus obtained are divided by the economically active male population to get the percentage of adult male labour in agriculture. The contribution of agriculture to gross domestic product at factor incomes (at current prices) is tabulated for each of the years under consideration at p. 21.6 of S.A. Statistics 1976. These figures are converted to 1960 U.S. dollars and then divided by the adult male agricultural labour force.

13. Per capita electricity cunsumption: Electricity consumption per head at two year intervals from 1960 to 1974 is given at p. 14.3 of S.A. Statistics 1976. 1965 consumption is taken as the average of that in 1964 and 1966 and 1975 consumption as 1974 consumption plus half of (1974 con-sumption minus 1972 consumption). These figures are multiplied by total population (1:1:1) in each year.

population $\left(\frac{1}{2}:1:2/3\right)$

14. Per capita steel consumption: An index of consumption of rolled and drawn steel products for the period 1962 to 1970 is available in S.A. Reserve Bank, A statistical presentation of selected economic indicators of South Africa for the period 1946 to 1970, Pretoria, 1971 and for 1970 to 1976 in the Reserve Bank Quarterly Bulletin, June 1977. The former index is based on 1963 and the latter on 1970; given two figures for 1970, it was easy enough to convert the entire series to a 1970 base. Mr. v.d. Walt of the Reserve Bank was kind enough to tell us that the actual consumption in 1970 was 3,472 million metric tons, so the multiplication of the index in other years by this figure and subsequent division by the relevant pop-ulation statistic gives us the required figure. It was assumed that the growth rate in per capita consumption was the same from 1960 to 1962 as it was from 1962 to 1965; a 1960 figure could thus be generated.

15. Per capita energy consumption: Fortunately there exists a useful secondary source of information here in pp. 33-36 of M. Dagut: South Africa: an appraisal, Nedbank, 1977. Dagut supplies us with the following

.

information:

(a) Total energy consumption: 1960 - 42 million tons coal equivalent 1967 - 57 million tons coal equivalent

This amounts to a 5,0% p.a. compound growth rate in energy consumption.

(b) Percentage electricity of total useful energy produced:

-32--

1968 - 27,1% 1974 - 32,6%

Total useful energy produced in 1974

Total useful energy produced in 1968

 $\frac{\text{Electricity sold in 1974}}{\text{Electricity sold in 1968}} \times \frac{27,1}{32,6} = 1.362$

priate population figure.

(Electricity sales taken from p. 14.3 of S.A. Statistics 1976) This amounts to a 5,3% p.a. compound growth rate. Given an absolute energy figure in 1960, one can interpolate and extrapolate on the basis of these growth rates to get energy consumed in each of the other years under consideration. One then divides by the appropriate population figure.

16. <u>Percentage GDP from manufacturing</u>: The contribution of manufacturing to GDP at factor incomes at 1963 constant prices and total GDP measured in the same way are presented for each year from 1946 to 1975 at p.21.7 of <u>S.A. Statistics 1976</u>. Simple division yields the required result.

17. Per capita foreign trade: Figures for total imports (free on board) and total exports (including re-exports and gold) for each year from 1946 to 1974 are tabulated at p.16.5 of S.A. Statistics 1976. The corresponding figures for 1975 are taken from table S-57 of the <u>Reserve Bank Quarterly Bulletin</u> for June 1977. The figures are added, converted to 1960 U.S. dollars and divided by the appro-

18. Percentage of economically active population as salaried and wage earners. Simkins op.cit. was used as the source - economically active population was taken from table 9 as before. All employment other than that in subsistence agriculture was taken as salaried and wage employment - subsistence employment as recorded in table 13 was taken from total employment in table 18. Division yields the result.

Per capita GNP: Gross national product at (current) market prices was taken from Table I of S.A. Reserve Bank, <u>A statistical presentation of South Africa's</u> <u>quarterly national accounts for the period 1960 and 1974</u>, Pretoria, 1976 for 1960 and 1965 and the <u>Reserve Bank Quarterly Bulletin</u>, June 1977 for 1970 and 1975. These estimates were converted to 1960 U.S. dollar prices and divided by the appropriate population estimates.

-40-

Table I presents the results of the 18 indicators and per capita GNP in each of the four years considered.

	1960	1965	1970	1975
. Expectation of life at birth (years)	56,2	56,9	57,6	58,6
2. Percentage population in localities of 20 000 plus	35,4		36,3	
3. Per capita animal protein consumption (kg/year)	56,0	52,2	55,2	51,4
Combined primary and second- ary enrolment ratio (%)	45,5	47,5	51,9	59,8
5. Vocational enrolment ratio (per thousand)	5,1	5,8	6,2	5,8
5. Average number of persons per room	2,17		2,15	
. Newspaper circulation per thousand	68	63	66	68
3. Telephones per hundred thousand	6809	7380	9256	10853
9. Radios per thousand	158	190	2 26	258
10.% EAP in electricity, gas, water, sanitary services, transport, storage and communication.	5,1	4,8	4,4	4,5
<pre>Il.Agricultural production per male agricultural labourer (1960 US \$)</pre>	507	561	560	618
12. % adult male labour in agriculture	24,6	22,4	21,2	20,1
13. Per capita electricity consumption (kwh/year)	1464	1809	2323	2991
<pre>14. Per capita steel consumption (kg/year)</pre>	71	158	197	242
15. Per capita energy consump- tion (kg.coal equivalent	3106	3494	3929	4411
16. % GDP from manufacturing	20,4	24,1	25,0	25,4
I7. Per capita foreign trade (1960 US \$)	262	291	295	399
18. % EAP as salaried and wage earners	73,3	71,8	71,4	71,3
Per capita GNP (1960 US \$)	522	619	725	762

.

	1960.	
	Africa	
	South	
	1	
	ofile	
į	22	
:	elopment	
	dev	
-	UNRISD	
	н	
i		
•	hart	

ž
CONPLETE
HTIM
1960
FOR
POINTS
CORRESPONDENCE
TRANSFORMED
AND
ADJUSTED

Ē	1964 1647 1641	8	R 1	125 (gef en losed) 7,6, 2,6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
5,000	1000 1000 1000	111.1		y y 2.5 Preview Preview (Jace)
D	201.0 261.0 261.0 201.0	20	77.6	R.C. 10.5
FLATTENIS		4	20	2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
COMPLETE	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		50 250 250	A A A A A A A A A A A A A A A A A A A
1960. 1960.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7	75.5 U	11.0 7. 5 109 7. From American (constraint) and the from
TTCa	7.1 6.5 6.9	R	3 3	1.0 f.1.
Jth Af	and		61.5	0.0 0.13 5 £. 0.00 5 £. 0.00 5 £. 0.00 5 £. 0.00 5 £. 0.00 5 £.
- SOU	120	3	6°22	11.0°.
Ofile srormed (311.6 2572.2 2572.2	1401	C-20	10.12 10
AND TRAN	80,11 81,0 80,1 80,1 80,1 80,1 80,1 80,1	PART -	1,069	755 762-2000
el opme advusted	266.5 256.2 256.2 256.4 256.4	<u> </u>		3.0 Treatments (feat-ing)
D dev		17		1.5 1.5 Preset of Preset
UNRIS				The second secon
t I :	1 07 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			LS 211
Chart			9	A Long Contract of

-4]-Profiles for 1960 and 1975 are plotted on Charts I and II respectively.

,

-43-Appendix C

List of indicators used by Adelman and Morris

Sociocultural indicators

Size of the traditional agricultural sector Extent of dualism

- CU Extent of urbanisation
- Character of basic social organisation * Importance of the indigenous middle class Extent of social mobility Extent of literacy
- U Extent of mass communication Degree of cultural and ethnic homogeneity Degree of social tension
- C Crude fertility rate
- Degree of modernisation of outlook
- ** Predominant type of religion
- ** Level of socioeconomic development

Political indicators

- Degree of national integration and sense of national unity Degree of centralisation of political power
- ** Extent of political participation
- * Strength of democratic institutions Degree of freedom of political opposition and the press Degree of competitiveness of political parties Predominant basis of the party political system Strength of the labour movement
 - Political strength of the traditional elite
 - Political strength of the military
- ** Political and social influence of religious organisation Degree of administrative efficiency Extent of leadership commitment to economic development

- ** Extent of direct government economic activity
- Length of colonial experience **
- Type of colonial experience **
- ** Recency of self-government Extent of political stability

-44-

Economic indicators

- C Per capita GNP in 1961 , Growth rate of real per capita GNP, 1950/51 - 1963/64 Abundance of natural resources
- C Gross investment rate Modernisation of industry
- CU Industrialisation, 1950 63
- Character of agricultural organisation
- Modernisation of techniques in agriculture
- Improvement in agricultural productivity, 1950 63
- Adequacy of physical overhead capital
- * Improvement in physical overhead capital, 1950 63 Effectiveness of the tax system
- Improvement in the tax system 1950 63 . Effectiveness of financial institutions
 - Improvement in financial institutions, 1950 63
 - CU Improvement in human resources
 - C Structure of foreign trade
 - ** Rate of population growth
- C ** Country size and orientation of development strategy
- Note: * denotes item appearing in Adelman and Morris (1971) only
 - ** denotes item appearing in Adelman and Morris (1973) only Where dates are not specified the variables were measured in the period between 1957 and 1962
 - C denotes a corresponding indicator or indicators in Chenery and Syrquin
 - U denotes a corresponding indicator or indicators in UNRISD

DEVELOPMENT STUDIES RESEARCH GROUP

Publications, Papers and Proceedings

BOOKS

44

1. CHARLES SIMKINS AND DUNCAN CLARKE, Structural Unemployment in Southern Africa,

	Natal University Pietermaritzburg	Press, 1978. Price: R3,75 (Order from the Press at P.O. Box 375, 3200).	
2.	CHARLES AND COSM Development Stud	AS DESMOND (eds.), <i>South African Unemployment: A Black Picture</i> , ies Research Group and Agency for Industrial Mission, 1978. Price:R	3.
WOR	KING PAPERS	COST	
۱.	D.G. CLARKE	Foreign African Labour Supply in South Africa, 1960-1977. 62p. April 1977	
2.	D.G. CLARKE	The South African Chamber of Mines: Policy and Strategy with Reference to Foreign African Labour Supply. 45p. April 1977	
3.	C.E.W. SIMKINS	Conditions of Work in Contemporary South African Industry: A Study of Minimum Standards. 26p. April 1977	
4.	D.G. CLARKE	State Policy on Foreign African Labour in South Africa: Statutory, Administrative and Contractual Forms. 27p. September 1977	
5.	COSMAS DESMOND	Limehill Revisited: a Case Study of the Longer- term Effects of African Resettlement. 28p. Jan.19781,00	
6.	C.E.W. SIMKINS	Income Distribution among Settled Urban African Households in South Africa: 1970 and 1975. 59p. March 1978	
7.	C.E.W. SIMKINS & D.C.HINDSON	The Division of Labour in South Africa, 1969-1977 Feb. 1979 2,00	
8.	C.E.W. SIMKINS	South African Development in International Perspective 1950-197544p September 1979	
DIS	CUSSION PAPERS		
1.	D.G. CLARKE	Inflation and Subsistence Wages:Revised Estimates of the Urban Poverty Datum Line in Rhodesia for September 1976. 10p	
2.	L. CLARKE	Poverty and Unemployment in Nqutu. 9p	
3.	C. SIMKINS	Development economics and radical theories of the peripheral state 17p	
4.	C. SIMKINS	Male African Unemployment in the Richards Bay Area 0,50	
5.	C. SIMKINS	The Current Population Survey and South African Un- employment: Some Puzzles	
6.	M. MCGRATH	A Comment on the Current Population Survey, Income Distribution and Poverty	
7.	C. SIMKINS	On Quantitative methods in the social sciences 0,50	
PRO	DCEEDINGS	WORKSHOP ON UNEMPLOYMENT AND LABOUR REALLOCATION IN SOUTHERN AFRICA,DSRG, PIETERMARITZBURG.18/19 Mar.1977 (8 papers) 5,50	
Cop lit	oies of all items cerature with rese	listed may be purchased. The DSRG is also interested in exchanging archers in related fields. Proposals in this connection, orders for	

literature with researchers in related fields. Proposals in this connection, orders for papers or requests for further information should be addressed to the Secretary, Development Studies Research Group, Department of Economics, University of Natal, P.O. BOX 375,Pietermaritzburg, 3200.

This work is licensed under a Creative Commons

.

Attribution – NonCommercial - NoDerivs 3.0 Licence.

To view a copy of the licence please see: http://creativecommons.org/licenses/by-nc-nd/3.0/