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1. Executive summary 

Humanitarian predictive analytics is the use of big data to feed machine learning and statistical 

models to calculate the probable characteristics of humanitarian emergencies. The technology is 

being used to forecast the likely trajectory and features of humanitarian emergencies including 

pandemics, famines, natural disasters and refugee movements. This form of artificial intelligence 

is used to predict where and when disasters will unfold, what the defining characteristics of the 

situation will be and who will be the most affected populations. Accurate advance prediction 

enables the pre-positioning of emergency relief finance, supplies and personnel. 

Forecasting and early warning systems have always been a component of humanitarian action. 

However, the rapid expansion of computing power and big data has dramatically increased the 

potential for predictive analytics in evermore areas of humanitarian action. In the last few years, 

the term predictive analytics has come to refer primarily to a digital process, drawing on multiple 

sources of electronic data feeding machine learning algorithms to inform statistical models that 

compute the probability of different humanitarian outcomes. Historic data of previous 

humanitarian events plus mobile phone records and social media posts can provide the high 

volumes of data needed to analyse food security, predict malnutrition and inform aid deployment. 

Satellite images, meteorological data and financial transactions can be used to track and predict 

the escalation and trajectory of refugee movements. 

This rapid review research provides the most comprehensive mapping and analysis of predictive 

analytic initiatives in humanitarian aid to date. It documents 49 projects including a variety of 

novel applications (see Appendix for details). It provides a typology of predictive analytics in 

digital humanitarianism and answers a series of key questions about patterns of current use, 

ethical risks and future directions in the application of predictive analytics by humanitarian actors.  

The study took 14 days in May 2020. Forty-nine predictive analytics projects were mapped and 

analysed according to the main phases of the humanitarian cycle, type of predictions made, 

sector of application, geography of application, and technical approach used. Despite the 

limitations of rapid response research, some preliminary recommendations are made on the 

basis of the findings listed below.  

Main findings: 

• Our research shows that predictive analytics is being used in the mitigation, 

preparedness and response phases of the humanitarian lifecycle, but not the recovery 

phase. 

• Predictive analytics is also used by humanitarian agencies for functions such as human 

resource management, fundraising and logistics. 

• Predictive analytics is most often used by projects covered in this review to predict where 

humanitarian crises will occur (71% of initiatives) and who will be affected (40%). Less 

often it is used to predict what the affected situation will look like (26%) and when events 

will occur (18%). 

• By sector, predictive analytics is being applied in a wide variety of humanitarian 

applications. The most common are prediction of disease outbreak (9 initiatives), 

migration (9), conflict (7), disaster risk reduction (6), and food security (4). 
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• Geographically, the initiatives covered in the review were primarily in Africa and the Arab 

world, with fewer applications in Asia and Latin America. 

• Technically, most initiatives use historical humanitarian data combined with machine 

learning and statistical modelling to produce predictions. 

• The study details examples of a wide range of data sources, data collection techniques, 

machine learning and analytical models. 

• Predictive analytics is currently being used to complement rather than to replace 

traditional humanitarian analysis and forecasting. 

• Humanitarian predictive analytics is being used most often by large international 

agencies and small start-up companies. 

• We found little evidence of affected populations playing a significant role in the design or 

management of predictive analytics in humanitarian work. 

• Almost half of the initiatives (23) claimed that predictive analytics would improve 

efficiency by saving time or money although we were unable to validate these claims. 

• The ecosystem of humanitarian predictive analytics is not yet well defined or established. 

The Centre for Humanitarian Data plays a key global convening role, and sectoral and 

geographical specialists are beginning to emerge. 

• The use of predictive analytics by humanitarian actors is still an emerging practice 

characterised by pilot projects and early-stage innovations, which require further 

development and validation. 

• Open data is a significant enabler of predictive analytics in humanitarian action. 

Risks and downsides: 

• Feeding machine learning with historic data runs the risk of reproducing past errors, 

prejudices and inequalities. 

• Feeding machine learning with social media data runs the risk of amplifying the voices 

and concerns of the relatively privileged at the expense of the most vulnerable and 

marginalised. 

• Automating algorithmic processes is dehumanising and potentially in conflict with 

humanitarian commitments to human-centred and participatory processes. 

• The need for computing power and data science expertise makes it difficult for small and 

local actors to lead on predictive analytics – potentially creating new dependencies. 

• Together these risks may unintentionally lead to a form of digital humanitarianism that 

reflects, reproduces and amplifies patterns of historic inequality along intersecting lines 

including gender, race and class. 

Limitations: 

• This preliminary mapping and analysis is based on a rapid 14-day desk review of 

secondary sources, many of which are authored by innovators themselves. 

• It was not always possible to verify the claims made, to clarify whether initiatives are still 

on-going, or to find sufficient detail to answer research questions in detail. 

• Additional initiatives and literature continued to come to light even after the cut-off date 

showing scope for additional mapping. 

Recommendations:  

• Governments, humanitarian agencies, funders and private companies should publish 

more open data in order to further extend the potential for predictive analytics. 
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• Humanitarian agencies should apply the precautionary principle in data collection, data 

safeguarding and responsible data to protect vulnerable populations from harm. 

• To align practice with humanitarian principles and commitments, predictive analytics 

actors need to include affected populations in all aspects of the design and project cycle. 

• Funding of predictive analysis should be tied to risk assessment, risk mitigation and 

knowledge sharing on the ethics and downside-risks of predictive analytics. 

• Funders should support the emerging ecosystem to develop geographical or thematic 

specialisms, convene knowledge-sharing events and produce ethical guidelines for 

practice. 

• Further research is necessary to build on this preliminary mapping and analysis in this 

crucial and rapidly developing area of humanitarian action. 

• Primary research interviews with humanitarian agencies and key informants would make 

it possible to validate claims and establish the current status and future plans of initiatives 

• A small number of case studies would improve depth of understanding about approaches 

being used and proposed pathways to scale. 

• Focus groups or a workshop would surface agency experience of risks and barriers not 

shared in publicly accessible documents and enable lesson learning. 

2. Introduction 

The purpose of the report is to provide a preliminary mapping of the breadth of predictive 

analytics initiatives being applied to humanitarian action. This initial scoping study is based on a 

14-day desk study of secondary sources, many of which were produced by the initiatives 

themselves and tended to focus on the positive potential of their ambitions rather than on the 

limitations or challenges. Reviewing so many initiatives in such a short period of time meant that 

it was not always possible to know whether the initiatives were still on-going or whether they 

succeeded in realising their early ambitions. A second round of primary research would be an 

effective way to verify and deepen these preliminary findings. 

This brief introduction is followed by an overview of predictive analytics in wider society as 

context for its application in humanitarian aid in Section 3. Readers familiar with the data 

collection techniques, machine learning and statistical modelling technologies that underpin 

predictive analytics may wish to skip this section. In Section 4 we summarise the existing 

literature on predictive analytics in the humanitarian sector. Section 5 is where we begin to 

present findings from our review of current applications of predictive analytics in humanitarian 

practice. The review is based on desk-based research reviewing secondary sources: existing 

academic literature, grey literature, agency reports and humanitarian websites. In Section 6 we 

explain how predictive analytics is being applied in humanitarian practice by presenting new 

information on the range of data sources, data collection methods, and data modelling 

techniques being used to predict humanitarian emergencies. Section 7 is where we provide a 

typology of uses of predictive analytics to calculate where and when humanitarian emergencies 

will occur, who will be the most affected populations, and what the situation will look like. In 

Section 8 we outline future plans and direction for humanitarian predictive analytics. In the final 

sections, we review the risks and downsides of predictive analytics in humanitarian practice and 

make some tentative conclusions and recommendations.  

3. Predictive analytics 

Predictive analytics involves the recognition of patterns in historic data to calculate the likelihood 

of future events. Recommendation engines in Netflix, YouTube and Amazon use predictive 



 

4 

analytics to recognise patterns in your previous online activity (and that of people with patterns 

similar to yours) to statistically calculate the probability of which film, video or book you are most 

likely to want next. Cambridge Analytica and other political marketing consultancies take big data 

from Facebook and the electoral register and use machine learning to build behavioural profiles 

of every citizen to predict their voting preferences and micro-target them with political influencing 

messages. In theory, the more data they have on each individual the more accurate their 

predictive analytics. Siegel (2016: 15) defines predictive analytics as “technology that learns from 

experience [historic data] to predict the future behaviour of individuals in order to drive better 

decisions”. The three main components of predictive analytics are big data, machine learning 

and statistical modelling. 

Big data is often crudely defined as data sets that are too big to be analysed in a standard 

spreadsheet or too big to fit on a personal computer hard drive. Big data can consist of both 

structured and unstructured data. Structured data is data that is quantitative in nature and fits 

neatly into the rows and columns of a spreadsheet such as government statistical records or 

budgetary information. Unstructured data might include the text of hundreds of different 

documents, video and photos scraped from social media, Global Positioning System (GPS)  

mobile phone traces, satellite images and facial recognition images.  

Machine learning is the most often used tool in predictive analytics. It is a type of artificial 

intelligence which is used to find patterns in big data and uses them to calculate the probability of 

future events. Machine learning takes any explanatory variables that are found to be highly 

correlated with a particular past outcome and uses them to produce predicted future variables. A 

statistical model is used to assign a probability ‘score’ to each possibility. This can then be used 

to predict anything from voting patterns, commodity prices, migration flows or flood trajectories.  

Statistical modelling: The statistical analysis can use a single data set and a single model or 

combine multiple data and multiple scenarios in ‘ensemble models’. Ensemble modelling is the 

combination of multiple statistical models to improve predictability. Predictive analytics often uses 

hundreds or thousands of predictive models to analyse the probability of a range of possible 

future scenarios (Siegel, 2016). The increased availability of computing power, big data, and 

machine learning makes possible the automation of multiple statistical models at a fraction of the 

time and cost of traditional data modelling. The predictions generated by statistical modelling can 

be provided to human decision-makers to inform their deliberations (as with film 

recommendations that Netflix provides to support your choice of viewing) or the prediction can be 

used to drive an automated algorithmic decision-making process (as when YouTube auto-plays 

its video choice for you). Automated analytics is an emerging field where decisions based on 

predictive analytics are algorithmically determined and implemented entirely automatically 

(Davenport, 2015; Castellucia & Le Métayer, 2019).  

Predictive analytics has limits, comes with risks and raises ethical issues. Predicting that 

something will happen to a specific individual, community, or geography with 100% accuracy is 

impossible. It is not clear where legal liability resides if predictive analytics leads to injury or 

death. Predictive analytics is used in ways that are ethically unsound, for example, to nudge 

individuals towards thoughts, behaviours and voting preferences without their consent or 

transparency (as per Cambridge Analytica). There is also a growing research literature 

documenting evidence that the use of historic data in machine learning and algorithmic decision-

making often reflects, reproduces and amplifies historical patterns of gender, race and class 

(dis)advantage and inequality (Benjamin, 2019; Criado Perez, 2019; Eubanks, 2018; Hernandez 

& Roberts, 2018; Noble, 2018; O’Neil, 2017). The response of technologists to this (conscious or 

unconscious) bias in data and the politics in algorithms is often to try to manufacture a 
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technological fix of the data or the algorithm rather than to address the social problem itself or its 

root causes. It has also been argued that the use of algorithms, artificial intelligence and 

automated decision-making is dehumanising by definition in that it replaces the scope of human 

agency, deliberation and dialogue (Roberts & Faith, in press). Bastani and Kim (2018) are among 

the many scholars who have argued that it is important to keep domain experts engaged in an 

iterative human process of predictive analysis (the so-called ‘humans-in-the-loop’ argument).  

4. Predictive analytics in humanitarian aid 

Humanitarian actors and the humanitarian sector are often criticised for being slow to act and 

operationally inefficient (Swaminathan, 2018). In response to these challenges, the humanitarian 

sector has sought to shift from being responsive to disasters and crises to being more 

anticipatory. This has involved the increased use of early warning and forecasting systems to 

strengthen disaster prevention, preparedness and mitigation. Predictive analytics holds the 

potential to extend these proactive capabilities before and during disasters (Akter & Wamba 

2019; Swaminathan, 2018).  

The disaster management lifecycle consists of four stages: mitigation, preparedness, response, 

and recovery (Haigh, n.d.). The mitigation stage is designed to decrease the chances of a 

disaster happening or its potential impact on vulnerable populations and places.  

Figure 1. The four phases of the disaster management cycle 

Source: Adapted from Haigh, n.d.1 

 

1 Adapted from “Disaster Management Lifecycle”, by R. Haigh, n.d. 

http://www.science.earthjay.com/instruction/HSU/2017_spring/GEOL_308/lectures/lecture_01/GEOL_308_suppl_reading_02_I

ntroduction_to_Disaster_Management_Lifecycle.pdf © University of Salford. Reproduced under licence CC BY-NC-SA 2.5. 

The Disaster 

Management Cycle 

http://www.science.earthjay.com/instruction/HSU/2017_spring/GEOL_308/lectures/lecture_01/GEOL_308_suppl_reading_02_Introduction_to_Disaster_Management_Lifecycle.pdf
http://www.science.earthjay.com/instruction/HSU/2017_spring/GEOL_308/lectures/lecture_01/GEOL_308_suppl_reading_02_Introduction_to_Disaster_Management_Lifecycle.pdf
https://creativecommons.org/licenses/by-nc-sa/2.5/
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The preparedness phase aims to improve readiness for future disasters and includes funds 

allocation and prepositioning of assets. The response phase occurs after the disaster has hit and 

humanitarian actors are active on the ground. The recovery phase includes actions seeking to 

bring about long-term stabilisation after the disaster (Akter & Wamba, 2019). In a systematic 

review of 76 scholarly articles on big data in disaster management, Akter and Wamba (2019) 

found that 37% of all articles focused on mitigation, 29% on response, 23% on preparedness and 

only 3% focused on recovery.  

The existing literature highlights the potential for big data to help predict and prevent disasters 

but that there is a lack of real-world case studies because the use of big data in the humanitarian 

sector is relatively new. Watson et al. (2017: 17–18) found that although “studies demonstrate 

that crisis data have the potential to positively impact preparedness, there has been little 

empirical research relating to the actual use of crisis data for preparedness activities”. A 

workshop hosted by the Centre for Humanitarian Data in April 2019 also found that “Most of the 

models that were shared by organizations are in a pilot phase and still need further validation 

and feedback before they can be used to create a trusted signal for the [humanitarian] sector to 

respond to” and suggested that predictive analytics models will need to be used alongside 

existing forecasting techniques until the evidence base is built (Centre for Humanitarian Data, 

2019a: 2). The workshop also highlighted the need for case studies and documentation of 

humanitarian predictive analytic projects.  

There are signs that this is changing. In January (of 2020), the International Federation of Red 

Cross and Red Crescent Societies (IFRC) made its first use of its ‘Early Action Funding 

Mechanism’ tool to provide cash to vulnerable farmers predicted to loose livestock in a 

particularly harsh winter (IFRC, 2020). Although still largely in their pilot phases, several other 

humanitarian predictive analytics projects have been included in grey literature and/or media 

coverage, including the World Bank’s Famine Action Mechanism, which aims to predict famines 

before they happen and trigger funding based on predictions to facilitate earlier responses and 

possibly prevent crises (OCHA, 2019a); Save the Children’s forced displacement prediction tool 

which aims to provide actionable predictions about how a situation of forced displacement is 

likely to evolve over time (Morgan & Kaplan, 2018); and the UNHCR’s Jeston project which can 

predict the displacement of people in Somalia at least a month in advance (UNHCR, 2019).  

Although the use of predictive analytics is now widespread in the private and public sector in 

many developed countries, in the development and humanitarian aid sector the use of big data, 

machine learning and artificial intelligence are still at an exploratory stage (Paul, Jolley & 

Anthony, 2018). Although the use of predictive analytics by humanitarian actors is still in its 

infancy, attempts by humanitarian actors to apply predictive analytics are not completely new. 

One early proof of concept dates back to 2010 during the aftermath of the Haiti Earthquake, 

where call records of 1.9 million Haitians were analysed between 1.5 months prior to and almost 

one year following the earthquake. Results showed that the movement of Haitians within the 

country could be predicted during the first three months of the disaster (Lu, Bengtsson & Holme, 

2012).  

Moreover, predictive analytics are not the humanitarian sector’s first attempt at predicting 

disasters. The sector has long made use of forecasting early warning methodologies. However, 

as is the case in other sectors, the promise of predictive analytics in its new digital form (e.g. the 

combination of big data, machine learning and statistical modelling) is to go much further and get 

there faster than traditional forecasting and early warning methodologies. The following excerpt 

from a U.S. Agency for International Development (USAID) commissioned report on machine 

learning captures this well: 
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Of course, not all early-warning systems rely on machine learning. It is common for people 

to analyse geospatial, economic, or health data and make predictions about what might 

happen. One major difference is that human analysts tend to make predictions based on a 

small number of strong signals, such as anticipating a famine if rainfall is low and food 

prices are high. In contrast, machine learning methods excel at combining a large number 

of weak signals, each of which might have escaped human notice. This gives machine 

learning-based early warning systems the potential to find the ‘needle in a haystack’ and 

spot emerging problems more quickly than traditional methods (Paul et al., 2018: 19). 

The literature reviewed found a series of claims for the relevance of predictive analytics in 

relation to the different phases of the humanitarian lifecycle: in disaster mitigation, preparedness, 

response and recovery. These claims are summarised below.  

Mitigation: Predictive analytics can inform mitigation phase strategies that seek to prevent 

disasters and/or crises from happening or limit their impact once they happen (Akter & Wamba, 

2019). Predictive analytics can be used to calculate vulnerability to natural hazards and pinpoint 

which households, communities, and infrastructure humanitarian actors should prioritise 

(Letouze, Sangokoya & Ricard, 2017). The idea of using vulnerability as a predictor is not new. 

“vulnerability has a predictive aspect: it should be possible—on the basis of the characteristics of 

a group of people who are exposed to a particular hazard—to identify their capacity for 

resilience” (Cannon, 2008: 10). Locating vulnerable people and geographies vulnerable to 

natural hazards can be crucial as it is vulnerability to hazards that lead to disasters rather than 

the hazards themselves (Cannon, 2008). Addressing these vulnerabilities, therefore, has the 

potential to prevent or limit disasters.  

Preparedness: In the planning phase, predictive analytics can provide actionable early warning 

to authorities, citizens and humanitarian actors about imminent threats (Akter & Wamba, 2019). 

What is considered early will vary for different disasters and crises. For example, it may be 

possible to predict a famine months ahead of time, but it may only be possible to predict which 

areas are under threat of flooding due to a hurricane a week in advance or an earthquake just 

minutes before it happens (Watson et al., 2017). Hala Systems, one of the initiatives uncovered 

during our mapping exercise predicts which areas of Syria will be bombed by military planes 5 to 

10 minutes before the bombs land, sending text and instant messages to those in the affected 

locations (Hala Systems Inc., 2019). This very narrow time window provides citizens with just 

enough time to take shelter. 

Response: During the response phase, predictive analytics can help provide situational 

awareness. The use of predictive analytics at the response stage is strongly related to ‘now-

casting’ which refers to making real-time inferences about what will happen in the short term 

based on data (Letouze et al., 2017).“In the short term, the information gained from social media 

and other aerial imagery has the potential to inform those managing a crisis, who and where 

vulnerabilities might lie as a crisis develops. This could include ‘trend analysis’ and ‘predicting 

which populations are vulnerable’ to health [and other] risks, abuse or other additional effects” 

(Watson et al., 2017: 19–20). Predictive models based on call records and GPS data has been 

used to predict where people are most likely to flee or relocate (Lu et al., 2012). Predictive 

analytics can also provide early assessments of damages and losses (e.g. by analysing and 

classifying satellite imagery of the roofs of people’s homes) providing humanitarian actors with 

much needed data to guide rapid response (Letouze et al., 2017).  

Recovery: Relatively little work has been done to develop thinking on how predictive analytics 

could be used during recovery efforts. Echoing findings from Akter and Wamba (2019) our 
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literature review found that research on predictive analytics in the humanitarian sector lacks 

studies on the use of predictive analytics in the recovery phase of humanitarian action. In our 

mapping of the 49 cases of humanitarian predictive analytic initiatives, we found even coverage 

in the mitigation, preparedness and response phases of the humanitarian lifecycle. However, we 

did not find any initiatives focusing on the recovery phase. 

Like in other sectors, humanitarian predictive analytics is operationalised using a combination of 

big data, machine learning, and statistical modelling. Humanitarian emergencies leave behind a 

substantial trail of big data. The data from one disaster can be reused to inform mitigation, 

preparedness, and responses to future disasters (Watson et al., 2017). However, the 

humanitarian sector does not need to rely exclusively on the data that it produces itself. A large 

variety of external big data sources can be used to feed machine learning and statistical models 

to produce predictive analytics to guide humanitarian action. Data sources can include household 

surveys, mobile phone metadata, satellite imagery, social media, financial transaction data, 

crowdsourced crisis data, weather data and data held by government and private companies.  

5. Mapping humanitarian predictive analytics  

This section begins with the presentation of findings from our own research. It begins with an 

overview of the actors in the ecosystem of humanitarian predictive analysis. The mapping was 

limited by the lack of detail in the secondary data available online about many of the initiatives. In 

many cases, the only available data was written by project actors themselves. Much of the data 

was incomplete and insufficient to fully answer our research questions. A second round of 

primary research with innovators and informant interviews would strengthen the depth and 

validity of the data and enable research questions to be answered more thoroughly.  

Key organisations 

A key convening and coordinating role at the global level is currently played by the Centre for 

Humanitarian Data hosted at the United Nations (UN) Office for the Coordination of Humanitarian 

Affairs (OCHA). The Centre surveyed thousands of humanitarian professionals in 2019 and 

found that big data, predictive analytics, and statistical modelling were the top three areas that 

humanitarian workers wanted to learn more about (Centre for Humanitarian Data, 2019b). This 

led the Centre to begin a work-stream dedicated to predictive analytics. Its work on predictive 

analytics has three main goals: to develop new predictive models, provide quality assurance 

through peer review,2 and create a community of practice where knowledge can be shared, and 

partnerships and collaboration can be built (OCHA, 2019b). The Centre convenes events, 

provides training and helps set standards (OCHA, 2019b). The centre has crowdsourced a list of 

predictive analytics projects by humanitarian organisations.3 

While the Centre for Humanitarian Data plays a global role across all humanitarian sectors, there 

are a number of other initiatives emerging with sectoral or geographic specialisations. The 

Precision Public Health initiative is a $100 million fund seeking to scale and accelerate existing 

predictive analytics solutions related to health including in the area of disease outbreaks. The 

fund is supported by the Rockefeller Foundation in partnership with the United Nations Children's 

Fund (UNICEF), the World Health Organization, ministries of health, global health agencies, and 

 
2 https://centre.humdata.org/wp-content/uploads/2019/09/predictiveAnalytics_peerReview_updated.pdf 

3 https://centre.humdata.org/catalogue-for-predictive-models-in-the-humanitarian-sector/ 

https://centre.humdata.org/wp-content/uploads/2019/09/predictiveAnalytics_peerReview_updated.pdf
https://centre.humdata.org/catalogue-for-predictive-models-in-the-humanitarian-sector/


 

9 

technology companies. The fund has two main goals. Firstly, to invest in initiatives that use 

“predictive analytics to prevent rather than respond to health threats and enable them to be more 

targeted, effective and efficient” Secondly to “invest in leveraging big data on the social 

determinants of health—to identify the populations at greatest risk in order to facilitate the 

delivery of health interventions” (Rockefeller Foundation, 2019: 2). The initiative is also seeking 

to create an enabling environment for predictive health analytics by helping to address gaps in 

data availability and quality, data science talent, and policies regarding the responsible use of 

data. 

UN Global Pulse focuses on the use of big data in development, humanitarian aid, and 

peacebuilding sectors.4 UN Global Pulse is a partner to several of the humanitarian predictive 

analytics projects identified in this study. Data-Pop Alliance is a collaboration between Harvard 

Humanitarian, MIT, the Overseas Development Institute (ODI) and the Flowminder Foundation 

which seeks to “bring together researchers, experts, practitioners, and activists”.5 The Big Data 

for Development (BD4D) network is “a Southern-led partnership [partnership between the African 

Institute for Mathematics Sciences (AIMS), Local Development Research Institute (LDRI), Centro 

de Pensamiento Estrategico Internacional (CEPEI), LIRNEasia, and the Centre for Internet and 

Society (CIS) founded with the objective of developing policy-relevant research on big data for 

development that is conceptualized and implemented by Southern organisations”.6 A final 

relevant initiative is the private sector ‘AI for Impact’ programme of GSMA which seeks to scale 

the use of mobile big data analytics to tackle challenges related to the Sustainable Development 

Goals (SDGs).7  

We used the Centre for Humanitarian Data’s existing crowdsourced catalogue of 24 

humanitarian predictive analytic projects as a point of departure for our research (although some 

projects uploaded to the Centre for Humanitarian Data’s site did not use predictive analytics in 

humanitarian work or did not include enough information to enable inclusion). Twenty-one of the 

24 initiatives in the catalogue were included in our mapping, contributing 43% of the initiatives 

that we mapped and analysed. Two initiatives were removed because they did not make 

predictions based on historical data and one initiative was removed due to a lack of information. 

The addition of 28 new initiatives was produced through desk-based research of secondary 

sources, internet search and personal referrals. Additional projects continued to emerge after our 

cut-off date (May 1, 2020) which we were therefore unable to review or include. Our list is partial 

and preliminary. The field is growing and scope for further mapping exists. 

Based on the initiatives that we mapped, the following sections summarise what kind of 

organisations are active in humanitarian predictive analytics, which countries they work in, and 

what sectors of humanitarian work they are focused on. 

Organisation type 

Our research identified 49 initiatives that use predictive analytics in humanitarian work. The 

humanitarian predictive analytics space is diverse in terms of types of organisation leading 

projects. Humanitarian Agencies lead 13 of the initiatives (27%) of which nine were partnerships 

 

4 https://www.unglobalpulse.org/ 

5 https://datapopalliance.org/about/vision-and-members-2/ 

6 http://bd4d.net/ 

7 https://www.gsma.com/betterfuture/aiforimpact 

https://www.unglobalpulse.org/
https://datapopalliance.org/about/vision-and-members-2/
https://www.gsma.com/betterfuture/aiforimpact
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with other organisations. Multilateral organisations including UNICEF and the World Bank 

account for eight of the initiatives (16%) of which seven were partnerships with other actors. Ten 

initiatives (20%) were led by private companies, including Microsoft and Google and small start-

ups, of which only four were carried out in partnership with other actors.8 Nine initiatives (18%) 

were led by academic institutions. Of the academic-led initiatives, five consisted of partnerships. 

Three initiatives (6%) were led by international non-governmental organisations (INGO) that do 

not primarily focus on humanitarian action (e.g. Oxfam), of which one was a partnership with 

other actors. Two initiatives were led by Intergovernmental Organisations, namely the European 

Union and African Union, all of which were partnerships with other actors. Only two initiatives 

(4%) were led by bilateral donors notably DFID’s Cholera Prevention programme in Yemen (in 

partnership with OCHA, UK Meteorological Office, U.S National Aeronautics and Space 

Administration (NASA), University of Maryland and University of West Virginia) and USAID’s 

Famine Early Warning Systems Network (FEWSNET) (in partnership with NASA, the National 

Oceanic and Atmospheric Administration [NOAA], the U.S. Department of Agriculture [USDA], 

and U.S. Geological Survey [USGS]). Only one initiative was led by a national or local 

government body, namely the Mongolia dzud model which is a partnership between the National 

Agency for Meteorology and Environmental Monitoring and the IFRC. Lastly, one proof-of-

concept initiative (2%) was led and carried out by an individual person without any clear links to 

an organisation at the time of publishing.  

Table 1 provides an overview of the number and percentage of initiatives led by each type of 

organisation and their use of partnerships.  

Table 1. Humanitarian predictive analytics initiatives by organisation type 

Lead organisation 

type 

Number of 

initiatives 

% of total Of which are 

partnerships 

% that were 

partnerships 

Humanitarian 

organisation 

13 27% 9 69% 

Private 10 20% 4 40% 

Academic institutions 9 18% 5 56% 

Multilateral 

organisation 

8 16% 7 88% 

INGO 3 6% 1 33% 

Bilateral donors 2 4% 2 100% 

 

8 We did not consider funders or clients as partners. 
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Intergovernmental 

organisation 

2 4% 2 100% 

Local government 

organisation 

1 2% 1 100% 

Individual person 1 2% 0 0% 

Total 49   31 63% 

 
Source: Authors’ own. 

 

Although partnerships were common in the initiatives that were mapped, we were unable to 

locate information about the types of partnerships, their formats and relative utility. It was also 

noticeable that partnerships did not generally include a role for populations affected by 

humanitarian emergencies. Populations affected by conflict and disaster have the right to 

inclusion in projects intended to benefit them9 and they possess invaluable contextual and 

cultural knowledge. Humanitarian innovation too-often fails to build on indigenous knowledge, 

local innovation and existing capacity. To be optimally effective, humanitarian innovation needs 

to be in local languages, reflect local culture, be promoted by local champions, and adopted and 

sustained by local organisations. The International Committee of the Red Cross (ICRC) in their 

contribution to the UN Secretary-General’s High-Level Panel on Digital Cooperation warned that 

it is critically important that affected populations are “firmly at the centre of any initiatives in order 

to ensure the humanitarian response do no harm [emphasis added] in their application.”10 

Sectoral application 

Our mapping found that predictive analytics is being applied across a wide variety of 

humanitarian sectors. There were nine initiatives each in the areas of disease outbreaks and 

displacement and migration. Seven initiatives focused on conflicts. Six initiatives were concerned 

with disaster risk reduction. Four focused on food security. Floods; human resources; logistics; 

water, sanitation and hygiene (WASH); nutrition; and disaster response accounted for two 

projects each. Fundraising and livelihoods each had one project as well. Table 2 summarises 

these findings. In addition to applying predictive analytics to humanitarian operations, our study 

found that 10% of initiatives used predictive analytics in back-office activities (human resources, 

fundraising and logistics).  

  

 

9 http://www.inclusioncharter.org/ 

10 https://www.digitalcooperation.org/wp-content/uploads/2019/02/Charlotte_Lindsey_Curtet_CFC-ICRC-1.pdf  

http://www.inclusioncharter.org/
https://www.digitalcooperation.org/wp-content/uploads/2019/02/Charlotte_Lindsey_Curtet_CFC-ICRC-1.pdf
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Table 2. Predictive analytics initiatives by humanitarian sector 

Sector Initiatives 

Disease outbreaks 9 

Displacement and migration 9 

Conflict 7 

Disaster risk reduction 6 

Food security 4 

Floods 2 

Human resources 2 

Logistics 2 

WASH 2 

Disaster response 2 

Nutrition 2 

Fundraising 1 

Livelihoods 1 

Total 49 

 

Source: Authors’ own. 

Geographical application  

The initiatives identified were geographically dispersed, but the majority identified in this study 

were focused in Africa and the Arab world with significant numbers in Asia and Latin America. 

We were unable to verify the extent to which this is explained by overall funding patterns or other 

factors. 

Four Initiatives (8%) focused primarily on the sub-national level including three initiatives with a 

focus on a single state or city within a country namely in Bihar (India), Cali (Colombia), and 

Chicago (USA) and one initiative with a focus on a single refugee camp, namely the Za’atari 
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camp in Jordan which is home to 80,000 Syrian refugees. There were 13 national-level initiatives 

(17%) including initiatives in Yemen (3), Kenya (2), Malawi (1), Syria (2), Madagascar (1), 

Mongolia (1), Pakistan (1), Philippines (1), and Somalia (1).  

Eight initiatives (16%) covered a few countries (2–5) within a region. Of these, five were in Africa 

and three in Asia. Five initiatives (10%) sought to make predictions in many countries (e.g. 10 

countries within a region). These were evenly spread across the Arab world, Africa, Asia, and 

Latin America. Two initiatives (4%) focused on between 2–5 countries in more than one region. 

One of these initiatives consisted of countries across Africa and Asia while the other consisted of 

countries across Asia and Latin America.  

Nine initiatives (19%) have global scope, while a further three (6%) sought to make predictions in 

many countries geographically spread across the world including one initiative that aims to make 

predictions for all lower- and middle-income countries (LMICs). A further three initiatives (6%) 

operated at an organisational level including Médecins Sans Frontières (MSF)’s People Analytics 

human resources project and Direct Relief’s logistics predictive analytics project in partnership 

with IBM. 

Table 3. Humanitarian predictive analytics initiatives by geographical focus 

 Geographical focus Number of initiatives % of total 

National (17) 

Sub-national location 4 8% 

National  13 27% 

Regional (17) 

2 to 5 countries in a region 8 16% 

More than 5 countries in a region 5 10% 

2 to 5 countries in 2 regions (e.g. Asia and Africa) 2 4% 

Geographical intergovernmental areas  

(e.g. European Union and African Union) 

2 4% 

Global (15) 

Many countries around the world but not fully 

global (e.g. 20 countries) 

3 6% 
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Fully global  9 18% 

Global at the organisational level 3 6% 

Total 49   

 

Source: Authors’ own. 

6. Approaches to predictive analytics 

This section presents findings on the range of technologies and technical approaches to 

predictive analytics currently being used by humanitarian actors. It covers data sources, data 

collection methods and approaches to modelling prediction. The findings in this section are 

limited by the fact that the publicly available materials often did not detail the approach being 

used. Some initiatives do not share any details of their approach, others provide only a brief 

explanation insufficient for confident categorisation, whilst others document their methodology in 

detailed research papers and journal articles. Due to these limitations in the data, we cannot say 

precisely how many of the mapped organisations use a specific methodology. Primary research 

would be necessary to increase the quality of these findings. However, we are able to report the 

number of initiatives that did detail their technical approach.  

The examples of humanitarian predictive analytics that we identified are being used to 

complement, rather than to replace, traditional humanitarian analysis and forecasting. Most of the 

approaches rely on historical data which is collected using traditional survey and data collection 

methods. The primary data sources are humanitarian agencies’ own in-house data sets such as 

household surveys and open government data. As examples below illustrate, we also found 

instances of predictive analytics being used to complement existing early-warning and 

forecasting methods as a means of making predictions about some of their data blind spots i.e. 

areas where household surveys are not practically possible. For example, the World Food 

Programme (WFP)’s Hunger Map Live already makes forecasts about the state of food security 

around the world but is often unable to conduct household surveys in conflict zones. To 

overcome this WFP uses predictive analytics to address these blind spots on the map based on 

what is happening nearby and in areas with similar characteristics.11  

Data sources 

This study found that humanitarian predictive analytics projects are making use of a diverse and 

expanding range of data sources and types. In some cases, the historical data consisted of data 

that the organisation was already collecting in-house. As should be expected, this was especially 

prevalent in humanitarian and multi-lateral organisations which have a long history of collecting 

historical data. For example, WFP is constantly collecting food security data through household 

surveys which in recent years have been digitised and automated creating a large pool of big 

data. WFP has partnered with the Chinese e-commerce and logistics company Alibaba to 

analyse WFP’s Computer Assisted Telephone Interview (CATI) data to make real-time hunger 

 

11 https://hungermap.wfp.org/ 

https://hungermap.wfp.org/
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predictions on Hunger Map Live.12 Similarly, IBM is using the Danish Refugee Council‘s pre-

existing interview data to help predict patterns of population movement in their Mixed Migration 

Foresight Project (Danish Refugee Council & IBM, 2018). Other traditional data sources included 

case studies, expert interviews, and socio-economic household survey data. 

Open data is used heavily in humanitarian predictive analytics initiatives. Although we found only 

seven instances where open data was mentioned explicitly, there were many other situations 

where open data appears to be implicit. Data sets made open and freely available in machine-

readable formats by the World Bank and UN Agencies were mentioned by several initiatives. 

Open data was shown to be a significant enabler of predictive analytics in humanitarian action so 

increasing the availability of open data extends the potential of predictive analytics in 

humanitarian aid. Further research could usefully establish the precise extent and utility of open 

data in humanitarian predictive analytics.  

Satellite imagery was one of the most popular data sources found in at least nine (19%) of the 

initiatives. This popularity is explained partly by the increasing availability of free and open 

access satellite imagery.13 This study found satellite imagery being used to make humanitarian 

predictions across many sectors. UKAID and partners have successfully used satellite imagery to 

help predict which areas are at risk of a cholera outbreak in Yemen 6 days in advance. Google 

feeds satellite imagery to its ‘inundation model’ to help predict which areas are at risk of flooding 

(Nevo, 2019). WFP’s ‘Platform for Real-time Impact and Situation Monitoring’ (PRISM) combines 

satellite imagery with data gathered from remote sensors to predict climate hazard risks (World 

Food Programme, 2020). The Internal Displacement Monitoring Centre (IDMC), United Nations 

Office for Disaster Risk Reduction,and ETH Zurich are using satellite imagery to help predict 

displacement and damages after natural disasters by mapping houses that show sign of roof and 

house damage (Milano, 2017). The African Risk Capacity, “an advanced satellite weather 

surveillance and software – developed by [WFP] – to estimate and trigger readily available funds 

to African countries hit by severe weather events” (African Risk Capacity, n.d.).  

Social media data was used in at least four initiatives. The Crisis Computing Team at the Qatar 

Computing Research Institute (and partners) apply natural language processing and computer 

vision techniques to social media “to crisis information communicated via social media to gain 

situational awareness and actionable information for the humanitarian response” (QCRI, 2017). 

The United Nations High Commissioner for Refugees (UNHCR) Innovation Service, UN Global 

Pulse, and Crimson Hexagon looked into the feasibility of using Twitter data to analyse how 

people feel and think—known as a sentiment analysis—about the arrival of refugees in Europe to 

counter misinformation and to understand how refugees themselves felt about their new living 

conditions (UNHCR, 2019; UN Global Pulse, 2017). The International Red Cross and Red 

Crescent Movement has used Facebook population data to help map exposure to risks for its 

forecast-based financing programme (International Red Cross and Red Crescent Movement, 

2019). Humanity Data Systems—a commercial start-up—combines social media data with many 

different data sources to help simulate active conflict environments and determine how best to 

engage in the context (Humanity Data Systems, 2019). The use of social media data comes with 

known risks. Social media users are disproportionately urban, middle class, and literate so there 

is a danger that listening to their voices drowns out the voices of more disadvantaged 

populations (Roberts & Marthais, 2017). Privacy International has warned that humanitarian 

 

12 https://hungermap.wfp.org/ 

13 https://eos.com/blog/7-top-free-satellite-imagery-sources-in-2019/ 

https://hungermap.wfp.org/
https://eos.com/blog/7-top-free-satellite-imagery-sources-in-2019/
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organisations using social media metadata risk that use leading to surveillance, false 

identification, and mistargeting.14 

Not covered explicitly in the majority of initiatives’ documentation was the crucial issue of data 

safeguarding. Holding and processing data on vulnerable populations and their locations creates 

new risks and responsibilities for humanitarian actors. In a recent workshop in London on 

artificial intelligence in humanitarian aid, senior staff confessed that their data-management 

processes were sub-optimal and that the potential for data breach was a great concern (Roberts 

& Faith, in press). Big data comes with bigger risks and tackling the issues of responsible data 

(O’Donnell, 2015) and data safeguarding practices needs a higher profile in humanitarian 

predictive analytics.  

Data collection methods 

Crowdsourcing was used in at least three initiatives as a data collection method to feed 

predictive model. The company Premise Data and the local government of Cali, Colombia are 

relying on crowdsourced citizen data to predict potential Zika and other mosquito-transmitted 

disease hotspots (Novak, 2018). Similarly, the Cholera Artificial Learning Model (CALM) initiative 

have developed a chatbot to obtain rapid WASH data from places affected by cholera outbreaks 

(Badkundri et al., 2019). The Simon-Skjodt Center and Dartmouth College have used “crowd 

forecasting tools—including a public opinion pool and annual comparison survey—[to] leverage 

the ‘wisdom-of-the-crowd’ and provide real-time assessments” among with many other sources 

of data to predict the risk of mass killing and genocide across the world in their early warning 

project.15 

Remote sensing was used to generate data in at least five humanitarian predictive analytics 

models. UNICEF is applying a ‘smart city approach’ to a refugee camp in Jordan’s freshwater 

movement system through the application of sensors and laser meters to help predict which 

water tanks need to be refilled and when (Kaplan, 2017). Hala Systems Inc.—a start-up—uses 

sensors that track noise made from aeroplanes to determine which areas are likely to be bombed 

in the next 5-10 minutes and send alerts to citizens (Hala Systems Inc., 2019).  

Drone images were the data collection method in at least three humanitarian predictive analytics 

initiatives in our mapping. UNICEF piloted a project that combined data collected from drones 

with field observations to predict areas at high risk of malaria in Malawi (Stanton & Jones, 2018). 

Mercy Corps has looked into the use of drones to help map flood risk in Nepal and Timor-Leste 

(Sterling, 2017). 

Data analysis methods 

Mapped initiatives that were explicit about their methodologies all combined historic data and 

new data sources with new machine learning or modelling technologies. This section details the 

data analysis methods being used.  

Machine learning was referenced as an approach by 35 initiatives (73%) or implied by the use 

of the more general term artificial intelligence. Although the existing literature suggests that 

machine learning is a central element in most digital predictive analytics, we found 13 

 

14 https://privacyinternational.org/news-analysis/2535/do-no-harm-digital-age-privacy-and-security-cannot-be-ignored  

15 https://earlywarningproject.ushmm.org/about 

https://privacyinternational.org/news-analysis/2535/do-no-harm-digital-age-privacy-and-security-cannot-be-ignored
https://earlywarningproject.ushmm.org/about
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humanitarian initiatives (27%) that claimed to be doing predictive analytics without mentioning of 

machine learning. It is possible that organisations are using different definitions of predictive 

analytics. Of the 13 initiatives for which use of machine learning was unclear, six mentioned the 

use of statistical modelling, and two referred only to ‘software’. We would need to interview 

project actors to overcome these categorical limitations. 

Natural language processing is a subfield of artificial intelligence using tools that can process, 

analyse and respond to data containing human language (e.g. chatbots, Siri and Alexa). Natural 

language processing was used by at least three of the initiatives mapped. For example, the 

IDMC uses natural language processing to scrape through 5,000 media articles per day to 

extract 2,000 displacement facts per day which it uses to feed predictive models (IDMC, n.d.). 

The Crisis Computing Team at the Qatar Research Institute (and partners) apply natural 

language processing and computer vision techniques (algorithms that analyse digital images and 

videos) “to crisis information communicated via social media to gain situational awareness and 

actionable information for the humanitarian response” (Crisis Computing team at Qatar 

Computing Research Institute, 2017).  

Facial recognition software refers to technology that can identify individuals by analysing their 

facial features. One initiative by the start-up company Kimetrica is using predictive analytics and 

facial recognition software to predict which children are likely to be malnourished.16 

Computer simulations that predict the most likely outcomes for multiple scenarios are being 

used by at least six of the projects identified. For example, Predictify.Me was using computer 

simulations to predict which schools were at risk of a terror attack and how well the schools were 

prepared (Army Technology, 2015).17 Uppsala University’s Violence Early Warning System 

(ViEWS) uses dynamic simulation techniques to “predict armed conflict involving states and rebel 

groups, armed conflict between non-state actors, and violence against civilians … at [the] 

national level, subnational level and actor level” (Hegre et al., 2019: 156 ).  

Scenario building is similar to simulations but is done manually rather than generated 

automatically by an algorithm or computer software. At least three of the projects identified were 

analysing alternative potential scenarios that may warrant different responses. USAID’s 

FEWSNET utilises if/then scenario development to develop a ‘most-likely scenario’ of food 

security and what shocks or events may change the scenario in which ways (Famine Early 

Warning Systems Network, n.d.).  

7. What is being predicted?  

This section presents our findings on what humanitarian problems predictive analytics is being 

used to address. It provides many concrete examples of what is being predicted and why. 

Our original plan was to categorise humanitarian predictive analytics initiatives by the phase of 

the humanitarian cycle that most strongly aligned with each initiative. The mapping exercise 

highlighted a major issue with this approach: most initiatives claimed to address two or three of 

the phases. We were unable to categorise every initiative due to information gaps. Those that 

provided sufficient data were spread relatively equally across mitigation/prevention (21), 

 

16 https://kimetrica.com/our-projects/ 

17 It is unclear whether this initiative is still operational. The company itself seems to have closed its doors and its website no 
longer works. 

https://kimetrica.com/our-projects/
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preparedness (21), and response (14). We did not find any initiatives focusing on the recovery 

phase. Another 10% of initiatives addressed issues outside of the humanitarian management 

lifecycle categories in areas such as fundraising and human resource management. Twenty-

three projects used language that suggested predictive analytics would improve efficiency by 

saving time and money for them and partners. 

Instead of using phases of the humanitarian lifecycle, it proved more useful to categorise 

initiatives according to the issue that they were predicting. We found that humanitarian predictive 

analytics initiatives mainly focus on predicting (a) the most affected populations, (b) the 

characteristics of the humanitarian situation on the ground, (c) the location of humanitarian 

events and (d) the timing of those events (or who, what, where, when). This typology was more 

revealing of how predictive analytics is serving humanitarian objectives in practice. Although this 

typology has not previously been used for predictive analytics Swaminathan (2018: 1697–1698) 

suggests that big data can help answer compelling who, what where and when questions in 

many situations.  

Our analysis of initiatives illustrates that humanitarian predictive analytics projects are currently 

focused on answering four primary questions: (i) WHO will be most at risk in the advent of a 

disaster? (ii) WHAT will the situation be like? (iii) WHERE will events requiring humanitarian 

action likely unfold? (iv) WHEN will humanitarian deployment be needed? Figure 2 illustrates this 

typology including further related questions. 

Figure 2. Examples of the who, what, where and when of humanitarian predictive analytics

Source: Authors’ own. 

Some initiatives targeted more than one question. For example, we came across one initiative 

that cut across all the questions in our typology. Action Against Hunger’s Modelling Early Risk 

Indicators to Anticipate Malnutrition (MERIAM) project seeks to predict “who may be most at-risk 

of becoming wasted, when they are likely to become wasted, and where (in what geographical 
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area they reside)” as well as generate “scenarios [the what] that demonstrate how stresses and 

shocks affect this risk at a local level”.18 

The remainder of this section provides examples of humanitarian predictive analytics initiatives 

answering the above questions and the humanitarian problems that they address. Where 

initiatives address more than one question, they were covered under the question that they most 

strongly aligned with.  

Table 4. Number of humanitarian predictive analytics initiatives answering who, what, where, when questions19 

 

At Least 

Predict Where 35 

Predict Who 20 

Predict What 13 

Predict When 9 

 

Source: Authors’ own 

Predicting who  

Who will be most affected? This was the second most common question asked in our typology 

by the initiatives we uncovered, with at least 20 initiatives (41%) aiming to make predictions 

related to the ‘Who’ portion of our typology. This mainly involved predicting how many people in 

which demographic groups are likely to be affected as well as who will be most vulnerable, and 

who is most likely to be left behind. This information is key to enabling humanitarian actors to 

better target their efforts to aid affected populations by putting in place mitigation, preparedness 

and response resources. Less expected applications of predictive analytics in this category 

included the calculation of who among agency supporters is most likely to donate money and 

who among agency staff is most likely to resign. The remainder of this section details initiatives 

using predictive analytics to determine the most likely affected populations in humanitarian work.  

How many people will be in need? This question was common amongst humanitarian predictive 

analytics initiatives focusing on natural disasters. OCHA’s Joint Analysis of Disaster Exposure 

(JADE) is an analysis carried out within 24 hours of a sudden onset emergency which helps 

humanitarian actors respond by predicting economic and population impacts by identifying the 

number of people living in affected areas, the number of people of living in the worst affected 

areas and the number of people who were already vulnerable before the disaster. Getting 

predictions early after an onset disaster helps humanitarian actors “gauge level of response in 

early stages and mobilize resources to deliver life-saving aid in a timely manner” (JADE, n.d.). 

Disease outbreak initiatives are also seeking to answer this question. The CALM initiative has 

 

18 https://knowledgeagainsthunger.org/research/prevention/meriam-modelling-early-risk-indicators-to-anticipate-malnutrition/ 

19 Some initiatives are included under more than one question. 

https://knowledgeagainsthunger.org/research/prevention/meriam-modelling-early-risk-indicators-to-anticipate-malnutrition/
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proven effective in forecasting “the exact number (with an error margin of 4.787 cases per 

10,000) of cholera cases any given Yemeni governorate will experience for multiple time intervals 

ranging from 2 weeks to 2 months” (Team Lambert, 2018).  

Who will be displaced? This question was commonly asked in predictive analytics programmes 

focusing on population displacement and migration. The IDMC’s Global Displacement Risk 

Model seeks to predict the number of people likely to flee damaged homes due to specific natural 

hazards in a specific location every given year, decade or century. The IDMC hopes these 

predictions can help “prevent future displacement and reduce its impacts on people and prepare 

for, and respond to, disaster-related displacement”.20 

How many displaced people are likely to arrive? Related to the above, answering this question 

helps humanitarian actors better prepare and plan for influxes of people in specific locations. 

UNHCR and UN Global Pulse’s Project Jetson uses predictive modelling to better understand 

“the nexus between displacement, climate/weather anomalies and changes and violent conflict” 

and thus predict the number of internally displaced people and refugees to and from Somalia.21 

Who will be left behind? Researchers showed that predictive analytics could be used to 

determine which children are most likely to drop out of immunisation programmes. Such 

information could be used to help prevent future outbreaks by targeting at-risk children (Chandir 

et al., 2018).  

Who will attack who? Uppsala University’s ViEWS aims to predict which specific actors will 

commit an attack. Specifically, the initiative seeks to predict “armed conflict involving states and 

rebel groups, armed conflict between non-state actors, and violence against civilians … [and] can 

analyse violence at national level, subnational level and actor level” (Hegre et al., 2019: 156).  

Our research also identified the use of predictive analytics by humanitarian actors in their back-

office operations including fundraising and human resource activities.  

Who will contribute to humanitarian causes? Some humanitarian organisations are now using 

predictive analytics to mine data on their volunteers to determine under what conditions (e.g. 

time and place) each volunteer is most likely to offer their help so that they could better target 

volunteers during the preparation for and response to crises (Fox, 2019). NGOs and 

humanitarian organisations have also begun to use predictive analytics to sift through their 

previous fundraising history and donor data to determine which potential funders are most likely 

to donate for specific causes at specific points in time (BKV, 2013). 

Who is likely to resign? Humanitarian organisations are beginning to use predictive analytics to 

help them better manage their human resources and prepare for future staffing needs and 

potential employee turnover. MSF has a ‘people analytics’ programme which seeks to identify 

key staff at risk of leaving allowing MSF to offer potential leavers better offers or promotions in 

hopes to retain them (MSF, 2018). 

 

20 https://www.internal-displacement.org/disaster-risk-model 

21 http://jetson.unhcr.org/ 

https://www.internal-displacement.org/disaster-risk-model
http://jetson.unhcr.org/
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Predicting what 

Predictions related to the ‘What’ portion of our typology was the third most common question 

answered by the initiatives we uncovered. At least 13 initiatives (27%) aiming to make 

predictions related to the ‘What’ portion of our typology. 

What is the situation on the ground? Along with predicting where, who and when, humanitarian 

predictive analytics is often focused on providing situational awareness by predicting when 

supplies will run out as well as what factors are most likely to affect future emergency scenarios. 

This section contains examples of humanitarian predictive analysis where situational awareness 

is the prime focus (rather than one among many objectives).  

UNICEF Jordan has piloted the use of predictive analytics in urban waste management in the 

Za’atari refugee camp. The solution allows UNICEF to run more efficiently by predicting the fill 

rate and status of water tanks to improve humanitarian response and accountability for residents 

(Kaplan, 2017). Direct Relief is working with General Electric to improve humanitarian response 

by using data from previous disasters to predict what supplies will be needed where and by 

whom when a new disaster arises (McKechnie & Axelson, 2019).  

USAID’s FEWSNET programme helps humanitarian actors create scenarios using if/then 

analysis. It uses statistical modelling to predict what food insecurity scenarios are likely 

depending on a range of potential shocks such as currency devaluation, flooding, drought, etc. 

allowing humanitarian actors to better prepare (FEWSNET, n.d.). The International Crisis 

Group’s CrisisWatch initiative collates up-to-date information about 80 existing and emerging 

conflicts around the world and provides monthly early warnings of deteriorating situations that 

may require early action and prevention measures22 (International Crisis Group, 2016).  

What is the situation in data blind-spots? Several initiatives are using predictive analytics to 

predict what will happen in situations where traditional data collection is impossible. WFP and 

Alibaba’s Hunger Map Live tracks and predicts hunger in near real-time in order to identify areas 

currently food insecure or predicted to become food insecure. Hunger Map Live uses predictive 

analytics to predict food security outcomes for blind-spots on its map based on extrapolations 

from what is happening nearby and in areas with similar characteristics. 23 Brunel University 

London’s Flee Project uses predictive analytics to predict the extent of displacement in places 

where data collection is incomplete (Buchanunn, 2017). The Drones vs. Mosquitos project by 

Lancaster Medical School, Liverpool School of Tropical Medicine, Malawi-Liverpool-Wellcome 

Trust Clinical Research Programme and UNICEF mapped mosquito breeding grounds to predict 

the situation in other unmapped areas. These predictions could be used in efforts to prevent 

malaria outbreaks before they occur. Dimagi Inc. and The Arnhold Institute for Global Health’s 

Integrated Platform to Identify Malaria Data "Cold-Spots" project seeks to predict the situation in 

data blind spots where there is a lack of data in the border area between Senegal and Gambia 

(Gates Foundation, n.d.).  

What will be the effect of our action? Predictive scenario building and simulations are 

increasingly used as part of models to calculate what the likely outcomes will be for any given 

policy interventions. The Intergovernmental Authority on Development’s (IGAD) Conflict Early 

 

22 It is unclear if predictive analytics tools are used in the production of Crisis Watch’s reports. Follow up work is needed to 
determine if this initiative is in fact a predictive analytics project.  

23 https://hungermap.wfp.org/ 

https://hungermap.wfp.org/
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Warning and Response Mechanism (CEWARN) programme develops scenario predictions 

based on input from many partners to inform potential effective preparedness, prevention and 

response in conflict situations. Their efforts have been “credited with a significant reduction of 

violent conflict particularly along Kenya-Uganda as well as Ethiopia-Kenya-Somalia borders” 

(CEWARN, n.d.: 8).24 Brunel University‘s Flee project simulates multiple policy options to predict 

how border closures or camp (re)locations would affect migration (Buchanunn, 2017). Similarly, 

IDMC’s Pastoralist Livelihood and Displacement Simulator allows decision-makers to simulate 

different humanitarian interventions and predict their ability to withstand droughts, floods, and 

other effects of climate change, which helps to prevent, mitigate and respond to the impacts of 

droughts (Ginnetti & Franck, 2014). Private start-up Humanity Data System’s Humanitarian 

Operations Planning Environment (HOPE) simulates specific high-risk conflict scenarios to 

predict risk factors and help humanitarian actors think through response options of resource 

deployment (Humanity Data Systems, 2019).  

Predicting where 

Location prediction is the most common use of predictive analytics in humanitarian aid. At least 

35 of the initiatives (71%) used predictive analytics to calculate the most likely location of future 

humanitarian needs. 

Where should early funding release be triggered? The International Red Cross and Red 

Crescent Movement’s Forecast-based financing initiative—now implemented by at least 22 

national societies—predefines trigger data points that suggest imminent disasters which if 

correctly predicted may trigger funding release in time to prevent it from becoming a disaster or 

mitigate its potential impacts, and to help prepare for and respond to them (International Red 

Cross and Red Crescent Movement, 2019). Similarly, the World Bank, OCHA, ICRC, Microsoft, 

Google, and Amazon Web Services have teamed up on the Finance Action Mechanism (FAM) 

programme which predicts “subnational signal of food insecurity at least 6 months in advance” 

(Centre for Humanitarian Data, 2020; OCHA, 2018). The predictions from FAM are used to 

facilitate early action in the form of automatic “pre-agreed, pre-negotiated, pre-arranged” 

financing and joint response in hopes to increase preparedness and prevent famine (OCHA, 

2018). REACH and Shelter Cluster Yemen’s ‘REACH Flood Susceptibility Model’ seeks to help 

identify areas in Yemen most susceptible to flooding at a 60-metre resolution. It is suggested that 

the model “can serve to inform humanitarian programming with relation to flood risk [mitigation] 

and preparedness” (REACH, 2019: 1).25 The Mongolian National Agency for Meteorology and 

Environmental Monitoring is able to predict which pastoralists are at risk of losing their livelihoods 

by ranking household vulnerability and laying it on top of an exposure map and then predicting 

the outcomes for different groups of people for forecasted natural hazards. Earlier this year, the 

Mongolian Red Cross society used these predictions to activate its Early Action Protocol (EAP) 

triggering funding in the form of unrestricted cash assistance and livestock nutrition kits for 1,000 

pastoralists deemed vulnerable to an upcoming harsh winter. WFP’s Platform for Real-time 

Impact and Situation Monitoring “assesses the potential risk and forecasts the impact of climate 

hazards on the most vulnerable communities, in order to design risk reduction [mitigation] 

 

24 It is unclear whether the software used by CEWARN includes predictive analytics, but we included the initiative in the 
mapping because its aims strongly align with the other initiatives in this paper and because it was already mapped as a 
predictive analytics project by the Centre for Humanitarian Data. 

25 The initiative itself states that it is not predictive due to its inability to calculate risk of flooding of particular events. But we 
have included it anyway because its goals strongly align with other initiatives in the mapping and it had already been mapped 
by the Centre for Humanitarian Data. 
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activities and target disaster responses” (World Food Programme, 2020). Risk reduction 

activities linked to the initiative include Early Warning Early Action (EWEA), Shock Responsive 

Social Protection (SRSP), and Forecast-based Financing (FbF). 

Where is flooding likely to occur? Google is developing a flood forecasting model that predicts 

where floods are likely to occur as well as predicting severity in order to generate early warning 

through Google public alerts (Nevo, 2019). Mercy Corps is piloting the use of drones in their 

‘Managing Risk through Economic Development’ (M-RED) programme to monitor land-use 

changes and predict which areas are at risk of flooding in order to inform preventive measures 

(Sterling, 2017).  

Where is disease outbreak most likely? Humanitarian Predictive Analytics Initiatives focusing on 

disease outbreaks focus primarily on predicting location. DFID, OCHA, UK Meteorological Office, 

NASA, University of Maryland and University of West Virginia have teamed up to predict which 

areas in Yemen are likely to experience a cholera outbreak in hopes to prevent outbreaks and 

support mitigation by those responding to outbreaks. The initiative has helped DFID and partners 

to focus resources in places where outbreaks are predicted; stock-pile prevention supplies and 

cholera treatment kits and medical equipment for hospitals (DFID, 2018). DFID claims this 

initiative may have contributed to a decrease of cholera cases in Yemen. After its 

implementation, “there were only 672 suspected cases of cholera in July 2018 compared to 

13,659 in July 2017”. Similarly, the Global Cholera Risk Model, a proof of concept by the 

University of Florida, the University of Maryland and NASA, promises to predict outbreaks to a 

high degree of locational specificity (NASA, n.d.).  

Where mosquito-transmitted diseases will occur is another area of focus for predictive analytics. 

UNICEF partnered with Google to predict Zika outbreaks in Latin America by region and hopes 

the model could be repurposed for future outbreaks of other mosquito-borne diseases (Bentley & 

Kerry, 2016). A start-up named Artificial Intelligence in Medical Epidemiology (AIME) suggests 

that it can predict mosquito-transmitted diseases at 400-metre resolution in real-time and has 

used this data to predict the location of disease outbreaks up to 3 months ahead of time with an 

88.7% accuracy rate enabling prevention and mitigation measures (AIME, 2019). Premise Data 

and the local government in Cali, Colombia predict mosquito vector sites across the city to 

prevent outbreaks by identifying and destroying potential mosquito breeding grounds (Novak, 

2018).  

Where will there be conflict or atrocities? Initiatives seeking to answer this question mainly 

mentioned goals of prevention as their primary goal. The Simon-Skjodt Center and Dartmouth 

College’s ‘Early Warning Project’ seeks to predict which countries are at risk of mass killings in 

160 countries in the next two years in hopes that early warning signs can be detected, addressed 

and mass killings prevented (Simon-Skjodt Center, n.d.). Similarly, ViEWS aims to predict 

“armed conflict involving states and rebel groups, armed conflict between non-state actors, and 

violence against civilians … [and] can analyse violence at national level, subnational level and 

actor level”. ViEWS hopes its early warning may help prevent, mitigate and adapt to large-scale 

political violence (Uppsala Universitet, n.d.). 

Where will military rockets land? The Sentry project by start-up Hala Systems Inc. predicts where 

military planes in Syria are likely to attack 7 minutes in advance in time to provide early warning 

alerts to citizens via short message service (SMS), instant messaging, and sirens to prevent loss 

of life. According to Hala Systems’ preliminary analyses, the initiative has “resulted in an 

estimated 20-30% reduction in casualty rates in several areas under heavy bombardment in 

2018” (Hala Systems Inc., 2019: 2). The Pakistan Safe Schools Initiative by start-up 
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Predictify.Me was an initiative that predicted the risk of schools being attacked and the losses 

they would suffer from an attack, including suicide bombings, and then provided preparedness 

options accordingly (Inge, 2015; Watt, 2015).26  

Where will displaced people go? Brunel University’s Flee project seeks to predict where forcefully 

displaced people will migrate so that humanitarian actors are better prepared for their arrival and 

more efficiently allocate their resources to accommodate them (Buchanunn, 2017). IBM and the 

Danish Refugee Council’s Mixed Migration Foresight (MM4Sight) tool also seeks to predict 

migration flows, where people will migrate, and how they will get there in order to help prepare 

and plan more efficient responses (Danish Refugee Council & IBM, 2018; Novack, 2018).  

Where will the situation be worst? Predicting where the most acute need will be was the focus of 

the Netherland Red Cross’ 510 Typhoon Impact Model that seeks to predict which locations will 

be hardest hit by typhoons and hurricanes in order to mobilise resources optimally (Van Der 

Veen, 2016). 

Predicting when  

Although all predictive analytics is concerned with events in the future, not all predictive analytics 

is specifically focused on predicting the timing of those events. In our study, predictive analytics 

focused on determining ‘when’ events would occur accounted for just nine initiatives (18%). 

Understanding when the effects of a humanitarian emergency will be felt can be as important as 

knowing where it will be felt. Whether you are predicting the course of flooding from the 

highlands into the floodplains or the paths of famine or disease, timing is of the essence. The 

ability to (pre)deploy finance, supplies and personnel is a matter of timing as much as location.  

When will it begin? The CALM initiative is able to make predictions about cholera outbreaks in 

specific municipalities across Yemen at multiple time intervals ranging from 2 weeks to 2 months. 

Including multiple intervals has proven especially useful the initiative because longer time-frames 

are unable to capture the emergence of sudden spikes that require immediate response, 

whereas longer time-frames provide humanitarian actors with the time needed to better prepare 

for future outbreaks through prevention and mitigation strategies (Badkundri et al., 2019). The 

Pakistan Safe Schools Initiative by start-up Predictify Me provided schools with a 3–7 day 

window warning of when they are likely to be subject to a terrorist attack. It was believed to be 

able to predict attacks 3 days in advance with 72% accuracy (Inge, 2015; Kavilanz, 2015). 

Similarly, Hala Systems provides citizens with an early warning of a few minutes about an 

imminent air strike (Hala Systems Inc., 2019).  

When will it end? Save the Children’s Migration and Displacement (MDI) initiative seeks to 

predict the duration and scale of displacement in order to better prepare responses and 

determine whether short-term humanitarian relief or long-term development solutions should be 

prioritised in response to displacement. The hope is that this will allow Save the Children to make 

an early case for funding and use funds more efficiently (Morgan & Kaplan, 2018).  

8. Future Plans 

This section looks at the future plans for actors in humanitarian predictive analytics. In the data 

that we had access to there was relatively little information provided about future plans. No future 

 

26 The company that ran this initiative now appears to be out of business. 
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plans were available for 22 of the initiatives (46%). Details available on many others were limited 

to short website descriptions or quotes in blogs or other media. The future plans that were 

identifiable fell into two main categories of increasing depth and increasing breadth (i) plans to 

enhance and improve their existing predictive models and (ii) plans to scale existing predictive 

models to new subjects, new geographies, and new organisations.  

Improvements to existing predictive models were planned by several actors. Eight initiatives 

mentioned planning to feed additional data sources to their existing models. Two initiatives 

planned to explore the use of additional data collection technologies. Six organisations had plans 

to improve the predictive accuracy of their models. Two initiatives were planning to modify their 

models to enable them to make predictions further into the future. Two initiatives reported plans 

to automate some of the predictive processes. We also found one initiative wanting to improve 

the speed at which predictions could be made. 

Improving the scale of existing predictive analytics featured in the plans of many agencies. Four 

initiatives reported plans to expand the scope of their work by predicting additional factors via 

their models. At least eight initiatives are planning to apply their predictions to new places or 

event types. Three organisations were already scaling efforts, two of which include efforts to 

scale initiatives through innovation uptake by other organisations. For example, OCHA has 

expressed interest in scaling DFID’s project on cholera outbreak prediction (produced in 

partnership with the Met Office, NASA and others) to new contexts (CERF, 2019) and the Danish 

Refugee Council has now taken the lead role in scaling IBM’s refugee prediction model. Eight 

initiatives stated that they were seeking more collaborations and partnerships.  

Save the Children plans to build a cross-sector platform that allows data to be collected, shared, 

analysed, and incorporated into models that can better predict displacement patterns (Morgan & 

Kaplan, 2018). The WFP’s PRISM initiative is looking into user research to understand how to 

better understand the needs of external organisations that may be potential users of their 

predictive model. Similarly, one proof-of-concept study by Lancaster Medical School, Liverpool 

School of Tropical Medicine, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, 

and UNICEF looking into the use of drones to predict malaria outbreaks suggested they were 

seeking to make their solution as user-friendly as possible in order to improve the prospects of 

local ownership.  

We did not find any future plans which mentioned the inclusion of affected populations in the 

design, implementation or evaluation of predictive analytics. This raises the question of 

accountability and the issue of ‘Whose predictions?’, ‘Whose priorities?’ and ‘Whose interests are 

being served by predictive analytics in humanitarian aid?’. Future research could usefully 

investigate the range and relative successes of different pathways to scale for predictive 

analytics innovation in humanitarian action including franchising, open-sourcing, internal adoption 

and networked uptake. 

9. Risks and ethics of predictive analytics 

The terms predictive analytics, machine learning, data science and artificial intelligence can 

convey a false impression of scientific certitude. However, as in other areas, predictive analytics 

is based on biased data and incomplete models about dynamic and often chaotic situations. The 

resulting predictions are only probability calculations (with significant margins of error) about 

fundamentally unknowable futures (Heffernan, 2020). Humanitarians must be mindful that the 

use of digital data, algorithms and automated decision-making introduces new risks and 

responsibilities. The collection and storage of data on vulnerable populations and the production 
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of predictions to guide practice raises new ethical issues of data safeguarding and informed 

consent that must be weighed against crucial humanitarian principles. This section details some 

of the key issues arising. 

Not everything that is important can be predicted. Some crises are easier to predict than 

others. It is far easier to make reliable predictions in slow-onset disasters like droughts than it is 

to predict rapid onset disasters like earthquakes. There is an ongoing debate about whether 

rapid onset disasters like earthquakes can be predicted at all (Asencio–Cortés et al., 2018; 

Stierwalt, 2020). This may lead humanitarian actors to focus their predictive analytic efforts on 

the low-hanging fruit, the crises that are relatively easy to predict. Although predictive analytics 

may turn out to be a useful tool for mitigating, preparing and responding to crises, an over-

reliance on predictive analytics may lead to the neglect of important but less predictable issues 

and an unintended silencing of those whose experiences are not represented in historical data or 

whose voices are not present on social media. Humanitarian actors using predictive analytics 

must therefore be at pains to ensure that they remain people-centred and problem-driven rather 

than technology-centred and solution-driven.  

Change is constant. A major assumption made by those implementing predictive analytics is 

that the future will be like the past (Davenport, 2014). Although people tend to be ‘creatures of 

habit’ and maintain their behaviour patterns over time (Duhigg, 2013), predictive models may not 

be very good at picking up instances where behaviour is consciously changed, or when a big and 

rare event like the financial crises of 2008—or COVID-19—changes the opportunities and 

decisions available (Davenport, 2014). The more time that has passed since it was updated, the 

less accurate models are at prediction. This is illustrated by weather forecasts. Weather models 

can forecast the weather five days from now with 90% accuracy, but ten-day forecasts are only 

50% accurate.27  

Why things happen remains unclear. Predictive models find patterns or correlations in data, 

but correlation is not causation. Understanding why an event happens is outside the scope of 

humanitarian predictive analytics. Correlations in big data allow statistical models to pattern and 

predict who, what, where and when events will happen – but not why. So even if predictions are 

accurate, we are left no wiser about their causes. Advocates of predictive analytics argue that 

knowing what will happen is more important than knowing why it happens if it enables us to take 

action to produce more desirable outcomes. “It just needs to work; prediction trumps explanation” 

argues Siegel (2016: 132). However, this limits human action to responding to the symptoms of a 

problem rather than identifying and tackling its root cause.  

Bias in data. Data scientists have long used the maxim ‘garbage in – garbage out’ to describe 

the dependency of computer analysis outputs on the quality of the data inputs. Predictive 

analytics is entirely dependent on the quality of the data sets on which the machine learning and 

statistical models operate. This problem was exemplified when Amazon human resource 

management used machine learning to analyse all of its own historic employment appointments 

and then used them to predict and select candidates for interview. Their model reproduced their 

historical pattern of gender discrimination and disproportionately recommended appointing male 

candidates.28 In this case, the maxim ‘garbage in – garbage out’ could be modified to ‘patriarchy 

in – patriarchy out’. The example is relevant here not because we found humanitarians using 

 

27 https://scijinks.gov/forecast-reliability/ 

28 https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-
showed-bias-against-women-idUSKCN1MK08G 

https://scijinks.gov/forecast-reliability/
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
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predictive analytics in their human resource management (although we did) but because 

machine learning trained on patterns and correlations in the global North may perform poorly in 

other contexts. For example, a winning entry to a machine learning competition aiming to detect 

buildings from satellite imagery achieved 89% accuracy in Las Vegas, but only 42% in Khartoum, 

Sudan (Paul et al., 2018). In other cases, facial recognition software has been shown to be less 

likely to recognise darker faces (Benjamin, 2019).  

Data gaps. The experiences and realities of the demographic groups that humanitarian action 

seeks to serve are not well represented in commonly available data sets. “Data related to 

development challenges are often scarce and difficult to obtain, especially in a digital format 

conducive to machine learning” (Paul et al., 2018: 44). Existing data sets over-represent white 

men from the global North and make invisible black women from the global South (Lerman, 

2013; Noble, 2018; Criado Perez, 2019). The structurally low levels of representation of 

marginalised people in data sets are, in part, a function of their relative exclusion from digital 

connectivity, ownership and use. For example, predictive analytics increasingly draws on social 

media data to gain situational awareness in humanitarian settings. However, social media users 

are a relatively privileged demographic and attention to their data may make invisible the needs 

and priorities of more vulnerable affected populations. Over-reliance on social media data risks 

humanitarian organisations falling victim to a ‘signal problem’ where people in areas within a 

country that are less connected risk not having their realities reflected in the data. Moreover, the 

same may be true between richer and poorer parts of highly unequal cities (Crawford & Finn, 

2015). Using crisis maps based on this data may lead to assessments showing that the more 

affluent areas are the worst impacted by a disaster while making the situations of the poorest and 

most vulnerable invisible (Sharma & Joshi, 2019).  

Reproducing (dis)advantage. We live in societies which contain structural inequalities including 

ones of gender, race, class and caste. Machine learning that is trained on data from unequal 

societies tends to reflect, reproduce and amplify those inequalities (Benjamin, 2019). Predictive 

analytic models do not understand the meaning of the data that they sift through – they just find 

patterns and use them to predict futures. Predictive analytic models also do not have any sense 

of concepts such as justice or fairness or an understanding of historical injustice. Predictive 

analytics used in bail decisions that use historical data has been shown to reproduce racial 

(dis)advantage (Benjamin, 2019). Predictive analytics in recruitment settings that uses historical 

hiring data has been shown to reproduce gender (dis)advantage (Paul et al., 2018). The risk, 

therefore, exists that predictive analytics in humanitarian action will have the unintended 

consequence of reproducing historical patterns of discrimination and inequities. A workshop held 

by the Centre for Humanitarian Data drew attention to these risks.  

The tendency of algorithmic methods to learn and codify the current state of the world and 

thereby make it harder to change, seemed of particular concern to participants in relation 

to current use cases for predictive analytics in the humanitarian sector, e.g. are we building 

models that perpetuate and encode past mistakes? (Centre for Humanitarian Data, 2019a: 

7).  

These concerns were also echoed in the recent workshop on the use of artificial intelligence in 

humanitarian aid convened by UK Research and Innovation. Participants reflected on the danger 

of automating inequalities and dehumanising humanitarian processes. They concluded that there 

is an important role for researchers to work with affected populations and humanitarian 

practitioners to build frameworks that align with the precautionary principle to ‘do no harm’ 

(Roberts & Faith, in press). 
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Data resilience, viability and veracity after disasters. Physical digital infrastructures are often 

destroyed in disasters, and targeted in conflict, such that reliance on digital data can create blind 

spots. Infrastructure destruction may make areas virtually invisible (Sharma & Joshi, 2019). 

Social media may allow humanitarian actors to collect data very quickly after a disaster but 

making sense of this data can be quite difficult. The data is often messy, in multiple local 

languages and the shared content often includes highly contextual meanings which can be 

difficult to decode, especially by foreign data scientists. Moreover, digital data collected after the 

onset of a disaster can contain a lot of noise, especially when it is crowdsourced (Sharma & 

Joshi, 2019). There is also the possibility of inauthentic digital actors (trolls, bots or cyborgs) 

intentionally spreading false information (Bradshaw & Howard, 2018).  

Data privacy. To counter the risks of data misuse it is often proposed that data is anonymised. 

However, it has been proven that by linking and combining multiple data sets it is possible to de-

anonymise data in what is known as the mosaic effect (Mazmanian, 2014). Moreover, ethical 

issues of informed consent arise when individuals provide permission for their data to be used for 

one purpose (e.g. a pandemic) but it is then shared for other purposes without the individual’s 

informed consent for that purpose (UN Global Pulse, 2017). In many cases, the data used to 

make predictions is secondary historical data—collected for a purpose other than prediction—

and in some cases pre-exists the widespread use of machine learning, an application which 

might have been unimaginable for some of those consenting to have their data collected 

(Ballantyne, 2018).  

Accountability. The humanitarian sector has long struggled with issues of accountability to 

affected populations (Alexander et al., 2013). Predictive analytics adds to this problem. Machine 

learning algorithms are a ‘black box’ meaning that their internal workings are most often 

inaccessible or unknowable. Machine learning finds patterns without precise instruction and not 

even the people who make truly understand why they make particular predictions. This presents 

ethical dilemmas about transparency and accountability. It can be argued that machine learning 

is dehumanising by design as it aims to replace human dialogue and deliberation with automated 

machine calculation. As such algorithmic decision-making may be in potential conflict with 

humanitarian commitments to human-centred and participatory processes (Roberts & Faith, in 

press). Sharma and Joshi (2019) argue that ‘digital humanitarians’ working online in other 

countries tend not to have local contextual knowledge of disaster or humanitarian settings and 

may, therefore, be less able to assess whether their work will ‘do no harm’ (Sharma & Joshi, 

2019).  

The sector has recognised a need to put in place guidelines and governance mechanisms to 

make sure that predictive analytics does not cause harm. The Centre for Humanitarian Data is 

active in this area organising a peer review mechanism. There is also a new Data Science and 

Ethics Group29 which has published a Framework for the Ethical Use of Advanced Data Science 

Methods in Humanitarian Sector (DSEG, 2020). The Centre for Humanitarian Data have 

reminded practitioners of the value of keeping ‘humans in the loop’ and cautioned that predictive 

analytic models should be seen as tools rather than solutions – which require the involvement of 

human decision-makers from the beginning in order to be successful (Centre for Humanitarian 

Data, 2019a). 

 

29 https://datascienceinitiative.eu/events/introducing-the-humanitarian-data-science-and-ethics-group-dseg-why-do-we-need-an-
ethical-framework/ 

https://datascienceinitiative.eu/events/introducing-the-humanitarian-data-science-and-ethics-group-dseg-why-do-we-need-an-ethical-framework/
https://datascienceinitiative.eu/events/introducing-the-humanitarian-data-science-and-ethics-group-dseg-why-do-we-need-an-ethical-framework/
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10. Conclusion 

This report has provided a preliminary mapping and analysis of humanitarian predictive analytics 

projects. Despite the limitations of a rapid response review, this study is the most extensive 

mapping and analysis to date of predictive analytics applied to humanitarian action. Although 

further research is necessary to extend the breadth of initiative covered and to verify the detail of 

these findings, we have been able to map the principle contours and features in the emerging 

landscape of humanitarian predictive analytics. 

This study has provided evidence that predictive analytics is being employed to a wide range of 

humanitarian problems in a rapidly growing number of applications. The potential for expansion 

to new humanitarian problems, geographies and sectors is great. Currently, predictive analytics 

is mainly focused on humanitarian problems in the areas of disease outbreak, conflict, migration, 

disaster risk reduction, and food security, with lower levels of activity in other operational areas 

as well as key support functions of fundraising, human resources and logistics. The study has 

found that humanitarian predictive analytics is mainly being used to predict where humanitarian 

events will happen (71%), who will be most affected (40%), what the key features of the 

humanitarian emergency will be (26%) and when events are most likely to occur (18%). 

Geographically, the initiatives mapped are concentrated in Africa and the Arab world with lower 

levels of activity in Asia and Latin America. Technically, predictive analytics uses a wide range of 

novel data sources including open data, social media data, and satellite and drone images in 

order to produce the big data necessary for machine learning and statistical modelling. The most 

common technical approaches being employed include natural language processing, image 

recognition and statistical modelling using simulations and scenarios.  

The ecosystem of predictive analytics is developing slowly with the Centre for Humanitarian Data 

playing a key convening role and other sectoral and geographical specialist agencies emerging. 

The use of predictive analytics in humanitarian work remains in its infancy and currently, it is 

being used alongside - not in place of - traditional humanitarian forecasting and early-warning 

systems. Our study shows that predictive analytics is carried out predominantly by large 

international humanitarian organisations and commercial start-ups and that partnership between 

multiple actors are common. However, the specialised skill sets and high cost of data science 

expertise make it very difficult for indigenous and small local agencies to lead on applications of 

predictive analytics. We found little evidence that affected populations are being engaged in 

predictive analytics projects by humanitarian agencies.  

Limited time and reliance on secondary data meant that we had incomplete data which made it 

difficult to determine whether initiatives were ongoing or to verify claims made. Reliance on 

secondary data meant that we were able to gain limited insight into the risks, ethical dilemmas, 

future plans or barriers to scale experienced by predictive analytics actors. Primary research is 

necessary to illuminate these gaps in knowledge in this important and rapidly developing area. 

Although it is clear that partnerships are common in predictive analytics initiatives, no information 

was available about the motivation, relative contributions, tension or benefits of the partnerships. 

We were not able to find sufficient information on sources of finance for humanitarian predictive 

analytics to present any findings. Primary research would be necessary to ascertain these 

details.  

The collection and sharing of data on vulnerable populations and its use to inform humanitarian 

action presents serious ethical issues and risks. The desire to innovate, advance humanitarian 

response and gain efficiencies need to be balanced against humanitarian principles. Predictive 

analytics is not an exact science. It uses biased data and incomplete models to calculate 
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probabilities. Humanitarians must be mindful that the use of digital data, algorithms and 

automated decision-making are only tools to be used alongside the grounded knowledge of 

affected populations and experience of practitioners.  

Recommendations 

Our mapping and analysis give rise to four preliminary recommendations: the need to engage 

affected populations, strengthen the ecosystem, attend to risks, and conduct primary research in 

order to deepen understanding of the current situation and future directions.  

Affected populations: There is an opportunity at this early stage to actively engage affected 

populations in the design, implementation and evaluation of humanitarian predictive analytics. 

The lessons from participatory development and user-centred design can usefully inform an 

iterative action research project cycle in which the contextual knowledge of affected populations 

and the experience of humanitarian practitioners are combined with the technical expertise of 

data scientists to improve both the power relationships and predictive efficacy of future 

innovations in predictive analytics.  

Ecosystem development: The ecosystem of humanitarian predictive analytics is emerging with 

effective leadership from the Centre for Humanitarian Data, OCHA and the Humanitarian Data 

Science and Ethics Group (DSEG). Funders should support the development of ecosystem 

diversity by strengthening organisations with sectoral specialisms like Precision Public Health or 

with geographic specialisms located in the global South like members of Big Data for 

Development. The promotion of open data, the sharing of lessons, tools and standards, and 

partnerships that enable dissemination, adoption and uptake are key. 

Risks and downsides: Humanitarian agencies must apply the precautionary principle in data 

collection, data safeguarding, and responsible data to protect vulnerable populations from harm. 

The pressure to innovate, advance humanitarian action and secure efficiencies should never 

lead to experimenting on vulnerable populations. Current data security and data protection 

practices need significant improvement. A dialogue needs to take place within the humanitarian 

sector about the tension between human-centred processes and algorithmic decision-making. 

Further research: Our knowledge about this crucial and rapidly changing area would be greatly 

improved by primary research. Interviews with leading innovators and experts would deepen our 

understanding of what is current, what is working, and what is planned. We know little about 

pathways to scale predictive analytics. A series of short well-documented case studies would 

help attract resources, facilitate dialogue, and stimulate innovation. Focus groups or practitioner 

workshops would help surface pinch points and dilemmas not publicly discussed.   
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https://theirworld.org/news/technology-initiative-to-help-make-1000-schools-safer-in-pakistan
https://theirworld.org/news/technology-initiative-to-help-make-1000-schools-safer-in-pakistan
https://innovation.wfp.org/project/prism
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Appendix: List of initiatives included 

Initiative Organisation(s) Field Countries Link 

510 Typhoon impact model Netherlands Red Cross - 

510 

Disaster Risk 

Reduction 

Philippines https://www.510.global/philippines-

typhoon-haima-priority-index/ 

African Risk Capacity 34 African Union member 

states, African Risk 

Capacity Agency, and ARC 

Insurance Company Limited 

Disaster Risk 

Reduction 

34 African Union 

countries  

https://www.africanriskcapacity.org/ 

Artemis Model30 World Bank, UN, ICRC, 

Microsoft, Google, Amazon 

Web Services 

Food security  Currently in five 

countries, to be 

expanded to 21 more 

“Somalia, along with 

South Sudan, 

Afghanistan, Niger, and 

Mali are likely pilots for 

the data analysis.” 

https://www.worldbank.org/en/programs/

famine-early-action-mechanism 

Artificial Intelligence in 

Medical Epidemiology (AIME)  

AIME Disease 

outbreaks 

Rio de Janeiro, 

Singapore, and two 

different states in 

Malaysia 

https://www.itu.int/en/ITU-T/Workshops-

and-

Seminars/ai4h/201911/Documents/S2_H

elmi_Zakariak_Presentation.pdf 

 

30 Also known as Famine Action Mechanism. 

https://www.510.global/philippines-typhoon-haima-priority-index/
https://www.510.global/philippines-typhoon-haima-priority-index/
https://www.africanriskcapacity.org/
https://www.worldbank.org/en/programs/famine-early-action-mechanism
https://www.worldbank.org/en/programs/famine-early-action-mechanism
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/ai4h/201911/Documents/S2_Helmi_Zakariak_Presentation.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/ai4h/201911/Documents/S2_Helmi_Zakariak_Presentation.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/ai4h/201911/Documents/S2_Helmi_Zakariak_Presentation.pdf
https://www.itu.int/en/ITU-T/Workshops-and-Seminars/ai4h/201911/Documents/S2_Helmi_Zakariak_Presentation.pdf
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Cholera Artificial Learning 

Model (CALM) 

Team Lambert Disease 

outbreaks 

Yemen http://2018.igem.org/Team:Lambert_GA/

CALM_MODEL 

Cholera Prevention in Yemen UKAID, OCHA, UK 

Meteorological Office, 

NASA, University of 

Maryland and University of 

West Virginia  

Disease 

outbreaks 

Yemen https://www.gov.uk/government/news/wo

rld-first-as-uk-aid-brings-together-

experts-to-predict-where-cholera-will-

strike-next 

Conflict Early Warning and 

Response Mechanism 

(CEWARN) 

Intergovernmental Authority 

on Development (IGAD), 

mention of diverse partners 

Conflict Djibouti, Eritrea, 

Ethiopia, Kenya, 

Somalia, South Sudan, 

Sudan, Uganda 

http://www.cewarn.org/attachments/articl

e/51/CEWARN_Brochure.pdf 

Crisis Computing/ Artificial 

Intelligence for Digital 

Response 

Qatar Computing Research 

Institute, UN OCHA, 

UNICEF, Suffolk County 

Fire Rescue and 

Emergency Management 

Department in New York, 

and Education Above All. 

Conflict Global  https://crisiscomputing.qcri.org/about/ 

CrisisWatch The International Crisis 

Group 

Conflict  80 countries https://www.crisisgroup.org/crisiswatch 

http://2018.igem.org/Team:Lambert_GA/CALM_MODEL
http://2018.igem.org/Team:Lambert_GA/CALM_MODEL
https://www.gov.uk/government/news/world-first-as-uk-aid-brings-together-experts-to-predict-where-cholera-will-strike-next
https://www.gov.uk/government/news/world-first-as-uk-aid-brings-together-experts-to-predict-where-cholera-will-strike-next
https://www.gov.uk/government/news/world-first-as-uk-aid-brings-together-experts-to-predict-where-cholera-will-strike-next
https://www.gov.uk/government/news/world-first-as-uk-aid-brings-together-experts-to-predict-where-cholera-will-strike-next
http://www.cewarn.org/attachments/article/51/CEWARN_Brochure.pdf
http://www.cewarn.org/attachments/article/51/CEWARN_Brochure.pdf
https://crisiscomputing.qcri.org/about/
https://www.crisisgroup.org/crisiswatch
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Drones vs. Mosquitos31 Lancaster Medical School 

(Lancaster University), 

Liverpool School of Tropical 

Medicine, Malawi-Liverpool-

Wellcome Trust Clinical 

Research Programme, 

UNICEF 

Disease 

outbreaks 

Malawi https://www.designindaba.com/articles/cr

eative-work/how-drones-are-helping-

fight-against-malaria 

Famine Early Warning 

Systems Network 

(FEWSNET) 

USAID, NASA, NOAA, 

USDA, USGS 

Food security  28 countries with focus 

on west, southern and 

east Africa 

https://fews.net/nosso-trabalho 

Fighting Zika with Digital 

Vector surveillance 

Premise Data, Local 

Government  

Disease 

outbreaks 

Cali (Colombia) https://www.premise.com/fighting-zika-

with-digital-vector-surveillance-cali-

colombia/ 

Flee Brunel University London Displacement 

and migration 

Three African countries https://www.brunel.ac.uk/news-and-

events/news/articles/New-simulation-

technology-to-predict-refugee-

destinations 

Forecast-based Financing in 

the International Red Cross 

and Red Crescent Movement 

International Red Cross and 

Red Crescent Movement, 

information flows to many 

Disaster Risk 

Reduction 

Global https://drive.google.com/file/d/1T6Z1bO1

uvtRvSFaCkVtSXCw1IQXFDVQO/view 

 

31  A project in UNICEF's humanitarian drone testing corridor. 

https://www.designindaba.com/articles/creative-work/how-drones-are-helping-fight-against-malaria
https://www.designindaba.com/articles/creative-work/how-drones-are-helping-fight-against-malaria
https://www.designindaba.com/articles/creative-work/how-drones-are-helping-fight-against-malaria
https://fews.net/nosso-trabalho
https://www.premise.com/fighting-zika-with-digital-vector-surveillance-cali-colombia/
https://www.premise.com/fighting-zika-with-digital-vector-surveillance-cali-colombia/
https://www.premise.com/fighting-zika-with-digital-vector-surveillance-cali-colombia/
https://www.brunel.ac.uk/news-and-events/news/articles/New-simulation-technology-to-predict-refugee-destinations
https://www.brunel.ac.uk/news-and-events/news/articles/New-simulation-technology-to-predict-refugee-destinations
https://www.brunel.ac.uk/news-and-events/news/articles/New-simulation-technology-to-predict-refugee-destinations
https://www.brunel.ac.uk/news-and-events/news/articles/New-simulation-technology-to-predict-refugee-destinations
https://drive.google.com/file/d/1T6Z1bO1uvtRvSFaCkVtSXCw1IQXFDVQO/view
https://drive.google.com/file/d/1T6Z1bO1uvtRvSFaCkVtSXCw1IQXFDVQO/view
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different red cross 

organisations and others32 

Global Cholera Risk Model 

(GCRM) 

University of Florida, 

University of Maryland, 

NASA 

Disease 

outbreaks 

Global  https://gpm.nasa.gov/articles/using-

precipitation-data-map-cholera-risk 

Global Disaster 

Displacement Risk Model 

IDMC, UNDRR, ETH Zurich Displacement 

and migration 

Global  https://www.internal-

displacement.org/disaster-risk-model 

Humanitarian Enterprise 

Logistics and Provisioning 

(HELP) 

Humanity Data Systems Logistics Focus on the Middle 

East 

http://humanitydatasystems.com/help-2/ 

Humanitarian Operations 

Planning Environment 

(HOPE) 

Humanity Data Systems Disaster 

Response 

Focus on the Middle 

East 

http://humanitydatasystems.com/hope/ 

Hunger Map Live WFP and Alibaba Food security  Global https://hungermap.wfp.org/ 

IBM’s Refugee & Migration 

Predictive Analytics Solution 

prototype 

IBM Displacement 

and migration 

Syria https://www.businessinsider.com/sc/how

-to-predict-the-next-refugee-crisis-2018-

6?r=US&IR=T 

 

32 WMO, ODI, Frankfurt School UNEP collaboration centre, and an additional organisation whose name is not legible in the publication. 

https://gpm.nasa.gov/articles/using-precipitation-data-map-cholera-risk
https://gpm.nasa.gov/articles/using-precipitation-data-map-cholera-risk
https://www.internal-displacement.org/disaster-risk-model
https://www.internal-displacement.org/disaster-risk-model
http://humanitydatasystems.com/help-2/
http://humanitydatasystems.com/hope/
https://hungermap.wfp.org/
https://www.businessinsider.com/sc/how-to-predict-the-next-refugee-crisis-2018-6?r=US&IR=T
https://www.businessinsider.com/sc/how-to-predict-the-next-refugee-crisis-2018-6?r=US&IR=T
https://www.businessinsider.com/sc/how-to-predict-the-next-refugee-crisis-2018-6?r=US&IR=T
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Improving the collection of 

food aid33 

Catholic Relief Services, 

Esri Professional Services 

Food security  Madagascar https://www.esri.com/about/newsroom/ar

cuser/predictive-analysis-brings-food-

aid-closer-in-madagascar/ 

Integrated Platform to Identify 

Malaria Data "Cold-Spots" 

Dimagi, The Arnhold 

Institute for Global Health 

Disease 

outbreaks 

Senegal, Gambia https://gcgh.grandchallenges.org/grant/in

tegrated-platform-identify-malaria-data-

cold-spots 

Methods for Extremely Rapid 

Observation of Nutritional 

Status (MERON) 

Kimetrica Nutrition Kenya https://kimetrica.com/our-projects/ 

Migration and Displacement 

Initiative (MDI) 

Save the Children Displacement 

and migration 

Global https://resourcecentre.savethechildren.n

et/node/14290/pdf/predicting_displacem

ent_report_-_save_the_children_mdi.pdf 

Mixed Migration Foresight 

Project 

Danish Refugee Council 

and IBM 

Displacement 

and migration 

Afghanistan, Myanmar  http://www.mixedmigration.org/wp-

content/uploads/2018/07/MM4Sight_1pa

ger.pdf 

Modelling Early Risk 

Indicators to Anticipate 

Malnutrition (MERIAM) 

Action Against Hunger, The 

graduate institute of 

Geneva, Johns Hopkins 

University, University of 

Maryland  

Nutrition Kenya, Niger, Nigeria, 

Somalia and Uganda 

https://www.actionagainsthunger.org/me

riam 

 

33 Not the initiative’s official name, no name provided by the organisation. 

https://www.esri.com/about/newsroom/arcuser/predictive-analysis-brings-food-aid-closer-in-madagascar/
https://www.esri.com/about/newsroom/arcuser/predictive-analysis-brings-food-aid-closer-in-madagascar/
https://www.esri.com/about/newsroom/arcuser/predictive-analysis-brings-food-aid-closer-in-madagascar/
https://gcgh.grandchallenges.org/grant/integrated-platform-identify-malaria-data-cold-spots
https://gcgh.grandchallenges.org/grant/integrated-platform-identify-malaria-data-cold-spots
https://gcgh.grandchallenges.org/grant/integrated-platform-identify-malaria-data-cold-spots
https://kimetrica.com/our-projects/
https://resourcecentre.savethechildren.net/node/14290/pdf/predicting_displacement_report_-_save_the_children_mdi.pdf
https://resourcecentre.savethechildren.net/node/14290/pdf/predicting_displacement_report_-_save_the_children_mdi.pdf
https://resourcecentre.savethechildren.net/node/14290/pdf/predicting_displacement_report_-_save_the_children_mdi.pdf
http://www.mixedmigration.org/wp-content/uploads/2018/07/MM4Sight_1pager.pdf
http://www.mixedmigration.org/wp-content/uploads/2018/07/MM4Sight_1pager.pdf
http://www.mixedmigration.org/wp-content/uploads/2018/07/MM4Sight_1pager.pdf
https://www.actionagainsthunger.org/meriam
https://www.actionagainsthunger.org/meriam
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Mongolia dzud model National Agency for 

Meteorology and 

Environmental Monitoring 

(NAMEM), IFRC 

Livelihoods Mongolia  https://media.ifrc.org/ifrc/press-

release/red-cross-releases-funds-

anticipation-extreme-winter-mongolia/ 

Optimizing local volunteer 

deployment 

American Red Cross Human 

resources 

Chicago, USA https://medium.com/opex-

analytics/analytics-at-the-american-red-

cross-6c12443f6e1 

Pakistan Safe Schools 

Initiative34 

PredictifyMe, UNICEF Conflict Pakistan No link available35 

Pastoralist Livelihood and 

Displacement Simulator 

IDMC, Climate Interactive  Displacement 

and migration 

Border regions of Kenya, 

Ethiopia and Somalia 

https://www.internal-

displacement.org/sites/default/files/publi

cations/documents/201405-horn-of-

africa-technical-report-en.pdf 

People Analytics MSF Human 

resources 

Global http://msf-transformation.org/wp-

content/uploads/2018/11/People-

Analytics-Summary-2018.09.27.pdf 

 

34 Safe Schools Initiative is a larger UNICEF fund. 

35 The company's website appears to no longer exist. CrunchBase suggests the company closed its doors in 2018. 

https://media.ifrc.org/ifrc/press-release/red-cross-releases-funds-anticipation-extreme-winter-mongolia/
https://media.ifrc.org/ifrc/press-release/red-cross-releases-funds-anticipation-extreme-winter-mongolia/
https://media.ifrc.org/ifrc/press-release/red-cross-releases-funds-anticipation-extreme-winter-mongolia/
https://medium.com/opex-analytics/analytics-at-the-american-red-cross-6c12443f6e1
https://medium.com/opex-analytics/analytics-at-the-american-red-cross-6c12443f6e1
https://medium.com/opex-analytics/analytics-at-the-american-red-cross-6c12443f6e1
https://www.internal-displacement.org/sites/default/files/publications/documents/201405-horn-of-africa-technical-report-en.pdf
https://www.internal-displacement.org/sites/default/files/publications/documents/201405-horn-of-africa-technical-report-en.pdf
https://www.internal-displacement.org/sites/default/files/publications/documents/201405-horn-of-africa-technical-report-en.pdf
https://www.internal-displacement.org/sites/default/files/publications/documents/201405-horn-of-africa-technical-report-en.pdf
http://msf-transformation.org/wp-content/uploads/2018/11/People-Analytics-Summary-2018.09.27.pdf
http://msf-transformation.org/wp-content/uploads/2018/11/People-Analytics-Summary-2018.09.27.pdf
http://msf-transformation.org/wp-content/uploads/2018/11/People-Analytics-Summary-2018.09.27.pdf
https://www.crunchbase.com/
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Predicting Demographic 

Trends for Global UNHCR 

Persons of Concern 

Johnathon Shapiro36  Displacement 

and migration 

Global https://towardsdatascience.com/predictin

g-demographic-trends-for-global-unhcr-

persons-of-concern-86dc4b8b920d 

Predicting who will donate American Red Cross, BKV 

digital 

Funding USA http://bkv.bkvdigital.com/blog/bkv-and-

american-red-cross-to-present-using-

analytics-to-mine-donor-data/ 

Predictive analytics in 

humanitarian supply chains37  

Direct Relief and General 

Electric 

Logistics Global https://www.gelifesciences.com/en/us/ne

ws-center/ai-in-healthcare-and-

pandemics-10001 

PRIO conflict prediction Peace Research Institute 

Oslo (PRIO) 

Conflict Global http://folk.uio.no/hahegre/Papers/Predicti

onISQ_Final.pdf 

Project Jetson UNHCR Innovation Service, 

UN Global Pulse, Essex 

University Big Data and 

Technology Centre, 

Omdena Foundation 

Displacement 

and migration 

Within and outside of 

Somalia 

http://jetson.unhcr.org/ 

REACH flood susceptibility 

model 

REACH, Shelter Cluster 

Yemen 

Floods Yemen Link no longer available 

 

36  It is unclear who the work was for. 

37 Not the initiative’s official name, no name provided by the organisation. 

https://towardsdatascience.com/predicting-demographic-trends-for-global-unhcr-persons-of-concern-86dc4b8b920d
https://towardsdatascience.com/predicting-demographic-trends-for-global-unhcr-persons-of-concern-86dc4b8b920d
https://towardsdatascience.com/predicting-demographic-trends-for-global-unhcr-persons-of-concern-86dc4b8b920d
http://bkv.bkvdigital.com/blog/bkv-and-american-red-cross-to-present-using-analytics-to-mine-donor-data/
http://bkv.bkvdigital.com/blog/bkv-and-american-red-cross-to-present-using-analytics-to-mine-donor-data/
http://bkv.bkvdigital.com/blog/bkv-and-american-red-cross-to-present-using-analytics-to-mine-donor-data/
https://www.gelifesciences.com/en/us/news-center/ai-in-healthcare-and-pandemics-10001
https://www.gelifesciences.com/en/us/news-center/ai-in-healthcare-and-pandemics-10001
https://www.gelifesciences.com/en/us/news-center/ai-in-healthcare-and-pandemics-10001
http://folk.uio.no/hahegre/Papers/PredictionISQ_Final.pdf
http://folk.uio.no/hahegre/Papers/PredictionISQ_Final.pdf
http://jetson.unhcr.org/
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Sentry Hala Systems, Inc.  Conflict Syria https://halasystems.com/ 

Social Media Monitoring - 

Quantifying Sentiment - 

Xenophobia in Europe 

/Crimson Hexagon 

UNHCR' Innovation 

Service, UN Global Pulse, 

and Crimson Hexagon 

Displacement 

and migration 

Europe https://www.unhcr.org/innovation/experi

ments/ 

 

https://www.unhcr.org/innovation/wp-

content/uploads/2017/09/FINAL-White-

Paper.pdf 

The Early Warning Project Simon-Skjodt Center and 

Dartmouth College 

conflict Global https://earlywarningproject.ushmm.org/a

bout 

The inundation model - 

Google flood forecasting 

model 

Google AI for Social Good, 

Indian Central water 

commission 

Floods Bihar, India https://ai.googleblog.com/2019/09/an-

inside-look-at-flood-forecasting.html 

The Joint Analysis of 

Disaster Exposure (JADE) 

OCHA (Asia-Pacific), WFP 

(Asia-Pacific), Pacific 

Disaster Centre 

Disaster Risk 

Reduction 

20 countries in Asia 

pacific  

https://www.pdc.org/wp-

content/uploads/PDC-WFP-UNOCHA-

Partnership.pdf 

The Managing Risk through 

Economic Development (M-

RED) program's Drone 

Initiative 

Mercy Corps Disaster Risk 

Reduction 

Nepal, Timor-Leste https://medium.com/@tsterl20/the-ngos-

eye-in-the-sky-d6ec520dd4b0 

https://halasystems.com/
https://www.unhcr.org/innovation/experiments/https:/www.unhcr.org/innovation/wp-content/uploads/2017/09/FINAL-White-Paper.pdf
https://www.unhcr.org/innovation/experiments/https:/www.unhcr.org/innovation/wp-content/uploads/2017/09/FINAL-White-Paper.pdf
https://www.unhcr.org/innovation/experiments/https:/www.unhcr.org/innovation/wp-content/uploads/2017/09/FINAL-White-Paper.pdf
https://www.unhcr.org/innovation/experiments/https:/www.unhcr.org/innovation/wp-content/uploads/2017/09/FINAL-White-Paper.pdf
https://www.unhcr.org/innovation/experiments/https:/www.unhcr.org/innovation/wp-content/uploads/2017/09/FINAL-White-Paper.pdf
https://www.unhcr.org/innovation/experiments/https:/www.unhcr.org/innovation/wp-content/uploads/2017/09/FINAL-White-Paper.pdf
https://earlywarningproject.ushmm.org/about
https://earlywarningproject.ushmm.org/about
https://ai.googleblog.com/2019/09/an-inside-look-at-flood-forecasting.html
https://ai.googleblog.com/2019/09/an-inside-look-at-flood-forecasting.html
https://www.pdc.org/wp-content/uploads/PDC-WFP-UNOCHA-Partnership.pdf
https://www.pdc.org/wp-content/uploads/PDC-WFP-UNOCHA-Partnership.pdf
https://www.pdc.org/wp-content/uploads/PDC-WFP-UNOCHA-Partnership.pdf
https://medium.com/@tsterl20/the-ngos-eye-in-the-sky-d6ec520dd4b0
https://medium.com/@tsterl20/the-ngos-eye-in-the-sky-d6ec520dd4b0
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The Platform for Real-time 

Impact and Situation 

Monitoring 

(PRISM)/Vulnerability 

Analysis Monitoring Platform 

for the Impact of Regional 

Events (VAMPIRE) - 

PRISM/VAMPIRE 

WFP, The Office of the 

President of the Republic of 

Indonesia, the Food and 

Agricultural Organization 

(FAO) and UN Global Pulse 

Disaster Risk 

Reduction 

Sri Lanka, Cambodia, 

Mongolia, Afghanistan 

https://innovation.wfp.org/project/prism  

Uber for Waste: Using 

predictive analytics to 

streamline waste collection in 

the camps38  

UNICEF Jordan WASH Jordan’s Za’atari camp https://medium.com/@unicefjordan1/sm

art-refugee-camps-applying-the-best-of-

iot-and-ict-for-better-camp-management-

e35e619e7310 

Using Predictive Analytics to 

Identify Children at High Risk 

of Defaulting From a Routine 

Immunization Program: 

Feasibility Study 

Harvard Medical School 

Center for Global Health 

Delivery–Dubai, Interactive 

Research and Development 

Disease 

outbreaks 

LMICs https://publichealth.jmir.org/2018/3/e63/ 

Violence Early-Warning 

System (ViEWS) 

Uppsala University - 

Department of Peace and 

Conflict Research 

Conflict Global https://www.pcr.uu.se/research/views/ab

out-views/ 

 

38 This is not the initiative’s official name, no name provided by the organisation. 

https://innovation.wfp.org/project/prism
https://medium.com/@unicefjordan1/smart-refugee-camps-applying-the-best-of-iot-and-ict-for-better-camp-management-e35e619e7310
https://medium.com/@unicefjordan1/smart-refugee-camps-applying-the-best-of-iot-and-ict-for-better-camp-management-e35e619e7310
https://medium.com/@unicefjordan1/smart-refugee-camps-applying-the-best-of-iot-and-ict-for-better-camp-management-e35e619e7310
https://medium.com/@unicefjordan1/smart-refugee-camps-applying-the-best-of-iot-and-ict-for-better-camp-management-e35e619e7310
https://publichealth.jmir.org/2018/3/e63/
https://www.pcr.uu.se/research/views/about-views/
https://www.pcr.uu.se/research/views/about-views/


 

47 

Water Monitoring in Turkana 

and Wajir 

Oxfam GB, SenosrInsight, 

Element Blue39 

WASH Kenya https://sensorinsight.io/wp-

content/uploads/2016/07/Oxfam.pdf 

Zika Map UNICEF, Google Disease 

outbreaks 

Latin America https://www.reuters.com/article/us-

health-zika-alphabet/google-says-its-

engineers-working-with-unicef-to-map-

zika-idUSKCN0W50OR 

 

 

39 SensorInsight's parent company. 

https://sensorinsight.io/wp-content/uploads/2016/07/Oxfam.pdf
https://sensorinsight.io/wp-content/uploads/2016/07/Oxfam.pdf
https://www.reuters.com/article/us-health-zika-alphabet/google-says-its-engineers-working-with-unicef-to-map-zika-idUSKCN0W50OR
https://www.reuters.com/article/us-health-zika-alphabet/google-says-its-engineers-working-with-unicef-to-map-zika-idUSKCN0W50OR
https://www.reuters.com/article/us-health-zika-alphabet/google-says-its-engineers-working-with-unicef-to-map-zika-idUSKCN0W50OR
https://www.reuters.com/article/us-health-zika-alphabet/google-says-its-engineers-working-with-unicef-to-map-zika-idUSKCN0W50OR

