ORIGINAL ARTICLES
Acute myocardial infarction in Zimbabwe: the changing scene of coronary artery disease
Cholelithiasis in Dar es Salaam, Tanzania
Zinc, hydrochlorothiazide and sexual dysfunction
Neuropsychiatric HIV-1 infection study: in Kenya and Zaire cross-sectional phase I and II
Malignant solid tumours in Nigerian children
The diagnosis and management of gall bladder in private patients in Harare

CASE REPORTS
A case of dual chloroquine and halofantrine treatment failure in Zimbabwe
Kaposi’s sarcoma in a two-week-old infant born to a mother with Kaposi’s sarcoma/AIDS
A simple decannulating method for suprapubic trocar and cannula without a side slit

LETTERS TO THE EDITOR
The effects of sickle cell disease on the families of affected children

NOTES AND NEWS
Important notice to all readers: Polio eradication initiative

ERRATUM
Impact of primary health care on child morbidity and mortality in rural Ghana: the Gomoa experience
A case of dual chloroquine and halofantrine treatment failure in Zimbabwe

S MCHARAKURWA

SUMMARY

A case of malaria treatment failure with chloroquine and halofantrine is reported. The likely determinants and policy considerations are addressed.

INTRODUCTION

Global escalation of *Plasmodium falciparum* drug resistance continues to complicate treatment and pose a major setback for malaria control. Resistance to chloroquine, the erstwhile most effective and safe drug, has spread to all but a few isolated foci over the past few decades. This has seen the recent development and gradual introduction of novel and alternative antimalarial compounds such as artemisinine and its derivatives, and the phenanthrene methanol halofantrine.

Chloroquine still remains the drug of first choice for treatment of uncomplicated malaria in Zimbabwe.

*Blair Research Laboratory*
*Ministry of Health and Child Welfare*
*Zimbabwe*

*Correspondence to:*
*Blair Research Laboratory*
*Josiah Tongogara/Mazowe Street*
*P O Box CY 573*
*Causeway*
*Harare, Zimbabwe*
Figure I: Schedule of events pre and post treatment (TF, thick film).

<table>
<thead>
<tr>
<th>Date</th>
<th>TF, onset</th>
<th>Halofantrine</th>
<th>Chloroquine</th>
<th>Parasites demonstrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Sept.</td>
<td>19 Nov. '94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burma valley</td>
<td></td>
<td>(no protection)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

Because the patient was not cured prior to sulfadoxine/pyrimethamine treatment, and did not revisit a malaria endemic area, this case exhibited dual treatment failure to chloroquine and halofantrine. Most probably, the infection was chloroquine-resistant, which is hardly surprising as numerous cases have been documented in various parts of the country. With halofantrine, however, failure to cure was likely due to malabsorption. Halofantrine is an effective antimalarial compound with no evidence of cross resistance to chloroquine. Moreover, there has not been resistance selection pressure for the phenanthrene methanol, which is new in the country. It is known, though, that current tablet formulations of this sparingly soluble drug have shown evidence of erratic bioavailability in different individuals, which has been related to treatment failure. WHO recommended that better formulations of the drug be developed, and indeed studies have recently been initiated on a new micronized formulation.

In view of this potential intersubject variation in bioavailability it is recommended that local efficacy studies be conducted, with special emphasis on in vivo cure rates and bioabsorption. If malabsorption rates are substantial with wider introduction of the drug, prevalent subtherapeutic levels may select for halofantrine resistance and may not justify the relative cost of the drug. With the advent of drug resistance there is greater need for adherence to a rational drug policy tailored to the epidemiological situation and to minimising spread of drug resistance. The sending of heparinized blood specimens from suspect drug resistant cases to a central laboratory (e.g., Blair Research Laboratory) for in vitro confirmation needs to be strengthened. It may also be a beneficial alternative or complement to review such cases on day seven (and where possible day 14) post treatment, whence thick film positivity would indi-
cate second line therapy, which in Zimbabwe is sulfadoxine/pyrimethamine.

REFERENCES
