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The social and political lives of zoonotic disease models: 
Narratives, science and policy 

 
 

Melissa Leach and Ian Scoones 
 
 
Zoonotic diseases currently pose both major health threats and complex scientific and policy 
challenges, to which modelling is increasingly called to respond. In this article we argue that the 
challenges are best met by combining multiple models and modelling approaches that elucidate 
the various epidemiological, ecological and social processes at work. These models should not 
be understood as neutral science informing policy in a linear manner, but as having social and 
political lives: social, cultural and political norms and values that shape their development and 
which they carry and project. We develop and illustrate this argument in relation to the cases of 
H5N1 avian influenza and Ebola, exploring for each the range of modelling approaches deployed 
and the ways they have been co-constructed with a particular politics of policy. Addressing the 
complex, uncertain dynamics of zoonotic disease requires such social and political lives to be 
made explicit in approaches that aim at triangulation rather than integration, and plural and 
conditional rather than singular forms of policy advice. 
 
 
Introduction 
 
Zoonotic diseases – transmitted from animals to people – present    urgent  scientific and policy 
challenges. Since 1940, 60% of emerging infectious diseases affecting humans have originated 
from animals, both domestic and wild (Jones et al 2008). The impacts on poor people’s health, 
lives and livelihoods are increasingly recognised, while if unchecked, many zoonoses threaten 
global pandemics – as  HIV/AIDS and SARS demonstrated so vividly. Complex interactions of 
epidemiological,ecological, social and technological processes shape zoonotic disease 
emergence, transmission, risks and vulnerabilities, shaped by wider socio-economic and 
environmental drivers. Understanding and responding to these, as well as controlling outbreaks, 
have become crucial imperatives (King et al 2006), attracting heavy government and 
international investment. There is growing support for interdisciplinary and integrative 
approaches that address human, animal and ecosystem dimensions together – often labelled 
‘One World, One Health’ (e.g. FAO-OIE-WHO 2010).  
 
Modelling carries growing authority in these efforts, valued to render complexity more legible 
and handleable, and to provide evidence and predictions for policy. Yet modelling takes many 
forms. What does it offer – currently and potentially – to the challenges of addressing zoonotic 
diseases, especially in dynamic, uncertain, resource-poor settings?  
 
To address this question, we reject conceptions of modelling as an objective, neutral scientific 
exercise that linearly informs policy. We argue that multiple models that offer different 
perspectives on epidemiological, ecological and social processes can valuably be combined.  Yet 
such models themselves need to be understood as having social and political lives. Extending 
Appadurai’s original (1986) notion of the social life of things, this refers to the social, cultural 
and political norms and values that shape the development of particular models, and which they 



carry and project. Sociologists of science have explored how modelling involves social processes 
and practices that shape its inevitably selective readings of and gazes on the world  (Magnani 
and Nercessian 2009, Mattila 2006, Morgan 2009, Morgan and Morrison 1999, Mansnerus 
2012). We connect these insights with understandings of the politics of policy processes (Keeley 
and Scoones 2003) and of science and policy as mutually-constructed, or co-produced (Jasanoff 
2004, Shackley and Wynne 1995). The social and political lives of zoonotic disease models 
therefore refer to the ways they are developed, shaped and applied in interaction with – or co-
constructed with – the politics of policy. Such politics often involve an interplay of ‘policy 
narratives’ - simple storylines describing a policy problem, why it matters and to whom, and 
what should be done about it, that drive and justify interventions promoted by, or suiting the 
political interests, of certain groups (Roe 1994). Extending our previous analyses of epidemic 
narratives (Dry and Leach 2010, Scoones 2010), here we interrogate their interplay with 
scientific – and in particular modelling - processes. We explore how modelling contributes to 
particular policy narratives about zoonotic disease, and how policy narratives uphold the 
authority of particular models and modelling approaches.  
 
In addressing zoonoses, three broad types of modelling can be distinguished: 
mathematical/process-based models of epidemiological and ecological relationships 
parameterised according to available data; pattern-based models  which extract relationships 
from statistical analysis of empirical  datasets, and what we term ‘participatory’ modelling based 
on anthropological, ethnographic and participatory approaches, including (but importantly going 
beyond) the established field of participatory epidemiology (Catley et al 2012).  Such labelling 
carries irony, but brings such social science approaches into the same analytical field as more 
conventional modelling, enabling exploration of their politics.  
 
In the following sections, we explore applications of each type of model in two cases – H5N1 in 
southeast Asia and Ebola in central Africa. As the cases illustrate, different models also serve 
scientific and policy purposes within the different ‘stages’ of understanding and action around 
zoonotic diseases: from risk mapping, to designing and implementing control measures, to 
evaluating interventions.  
 
Both these cases involved localised disease outbreaks which some policy-makers and publics, at 
least, feared would ‘go global’. Both illustrate the contested political interests at stake in policy 
choices. And in each case, these interests interplayed with the application of contrasting 
approaches to modelling. Drawing on an analysis of original scientific papers, discussions with 
key actors, and related literature and media reports, we consider for each model the socio-
political and policy context in which scientists were working; the values and assumptions 
deployed; how uncertainties and data limitations were addressed, and the policy conclusions 
thus supported. In each case, although in very different ways, we show how modelling 
supported certain policy narratives over others, and how different modelling approaches 
interacted in a highly-politicised scientific and policy field. In conclusion, we suggest that these 
social and political lives of disease models cannot be wished away; rather, handling the complex, 
uncertain dynamics of zoonotic disease requires them to be made explicit in approaches that 
aim at triangulation rather than integration, and plural and conditional rather than singular 
forms of policy advice. 
 
 
 



Case 1: H5N1 
 
H5N1, highly pathogenic avian influenza, dominated headlines for much of the decade following 
the first recorded human deaths in Hong Kong in 1997. Global public health priorities and much 
science focused on this zoonosis, given the prospect of a global pandemic on the scale 
experienced in 1918 (Scoones and Forster 2010). Modelling efforts were central, dominated by 
one particular set of process-based models which we consider first. 
 
 ‘Evidence’ for policy: epidemiological process based models 
 
In September 2005, two papers were published simultaneously in Nature and Science. Both 
contained process-based simulation models of the potential spread of H5N1 in humans in 
Thailand, and the implications of different control measures (Ferguson et al 2005; Longini et al 
2005). Both argued that ‘control at source’, especially through a massive use of antiviral drugs 
combined with other containment measures, would help prevent a global outbreak. The much 
cited Ferguson et al (2005) paper has been widely used as the core evidence base for policy 
thinking, from the WHO to national governments.  
 
The models showed how ‘drugs could head off a flu pandemic – but only if we respond fast 
enough’ (Nature 2005: 614). As a Nature editorial argued: 
 

They reach markedly different conclusions about how easy it would be to contain an 
emerging pandemic. But both agree that it would be possible – if the virus was detected 
quickly, if it did not spread too fast, if sufficient antivirals were deployed quickly and 
massively around the outbreak’s epicentre, and if strict quarantine and other measures 
were used (p. 614). 

 
Ferguson et al’s model suggested that containment would succeed if everyone was treated 
within a five-kilometre radius, involving two to three million drug courses, and if quarantine and 
movement control were instituted from the start. By contrast, Longini et al’s model suggested 
that 100,000 - one million drug courses would be sufficient, administered to the ill and their 
social contacts.  
 
These variants notwithstanding, the dramatic figures and pleas for urgent action in both models 
fed perfectly into the ‘outbreak’ narrative gripping policymakers. In the same month as 
publication, the UN avian influenza coordinator, David Nabarro, cranked up the scare factor 
dramatically, arguing that total human deaths could reach 150 million (BBC 2005). The media 
had a field-day, and policymakers globally started planning for the worst. The push to boost the 
current WHO antiviral stockpile of 120,000 courses was high, and pharmaceutical companies 
happy to oblige. While human-to-human spread did not eventually occur to the feared extent, 
the power of the models in framing policy was clear. They drove the response to H5N1– and 
subsequently H1N1 ‘swine flu’ (Fraser et al 2009) and indeed other zoonoses - creating the 
justification for ‘at source’ control through a massive anti-viral drug intervention. 
 
Nevertheless, the Ferguson model made several questionable assumptions about 
epidemiological parameters and transmission dynamics, not least due to limited specific data 
from Thailand. Thus the generation time was assumed to be low (2.6 days) on the basis of data 
from 2000 in France, age specific attack rates were modelled from 1957 data from Sheffield, UK, 



and incubation times from a study of infection on an aeroplane. Households were assumed to 
be randomly distributed, and a ratio assumed between random, place-based and intra-
household infections, ignoring any social dynamics in rural village settings. The model chose the 
country’s third least populated rural area to seed the infection and drive the simulation. The 
resulting slow viral spread was central to the projected success of the model control strategy, 
requiring local containment within 30 days. Yet as we discuss below, other work suggests that 
outbreaks are especially common in peri-urban semi-intensive poultry production areas, where 
the disease may spread much faster. Spread was modelled from a 1994 migration and work 
survey, but this was restricted to formal workplaces, ignoring movement associated with 
informal activities. The model assumed no changes in behaviour as the pandemic accelerated, 
ignoring possible absences from schools, work places and other social distancing. Finally, it was 
assumed that implemented measures for detection and movement restriction would work 
smoothly – heroic assumptions contradicted by other studies (Safman 2010, Scoones 2010). 
  
Ferguson et al presented their methods and assumptions clearly and transparently, and carried 
out useful sensitivity analyses on key parameters. Nevertheless they argued definitively that ‘we 
believe that our conclusions are valid for other parts of Southeast Asia’ (p.209), and that ‘A 
feasible strategy for containment of the next influenza pandemic offers the potential to prevent 
millions of deaths... The challenges are great, but the costs of failure are potentially so 
catastrophic that it is imperative, to ensure that containment is given the best possible chance 
of success’ (p. 213). 
 
Arguably, on the cusp of a potentially major global pandemic detailed questioning of policy-
oriented models is neither feasible nor desirable. Reflecting later on managing an emerging 
influenza pandemic (in this case H1N1), Ferguson and others (Lipitsch et al 2009) highlight the 
dilemma: the eventual scale is uncertain and ‘decisions must be made when the threat is only 
modest’ (p.112). They continue: ‘This combination of urgency, uncertainty and the costs of 
interventions makes the effort to control infectious diseases especially difficult ....in practice, 
decisions have to be made before definitive information was available on the severity, 
transmissibility or natural history of the new virus’. However such reflections assume a top-
down, expert-led approach, where problems with data exist but can be surmounted through 
modelling of scenarios and options for policymakers, who make decisions and then 
‘communicate risks’ to the public. But what if the framing and assumptions of the model are off 
target? In a revealing reflection, Ferguson notes, ‘We had to make some assumptions about how 
a new influenza virus would behave...[but] less detailed statistical work had been done on past 
pandemics than we hoped’ (Nature, 2005b:xi). Addressing this shortfall through multiple model 
runs and sensitivity analyses cannot redress problems in basic assumptions internal to the 
framing of the model, or solve the problems of uncertainty (where we don’t know the 
probability of the outcomes), ambiguity (where the outcomes are disputed) and ignorance 
(where we don’t know what we don’t know) (cf. Stirling 1999). So - what other modelling 
approaches might have influenced the debate?  
 
Ducks and rice: an empirical pattern-based model 
 
In 2008 a statistical model, based on a multiple logistic regression framework and published in 
the Proceedings of the National Academy of Sciences, looked at the actual pattern of H5N1 
spread in poultry and ducks/geese, again in Thailand (Gilbert et al 2008). The model was 



studying empirically what happened, not predicting what might; nevertheless in important 
respects it qualifies and challenges the Ferguson et al predictions. 
 
The model investigated the statistical association between H5N1 presence and five 
environmental variables - elevation, human population, chicken numbers, duck numbers and 
rice cropping density - for three synchronous epidemic waves in Thailand and Vietnam. A 
statistical spatial risk model was developed for the second epidemic wave in Thailand, and 
shown to have predictive power in other waves, but also, more surprisingly, in Vietnam.  
 
The analysis was based on a hypothesis, backed by significant data (Gilbert et al 2007, 2006), 
associating H5N1 prevalence with a particular ‘rice-duck farming system’, where free-ranging 
ducks, carrying and shedding substantial amounts of virus, feed in harvested paddy fields. It 
suggested that H5N1 outbreaks are most likely where such systems exist, notably in lower 
elevation farming areas with high density of human populations and rice cropping. 
  
This model (and other pattern based analyses, e.g. Pfeiffer et al 2007) had a lesser policy impact 
than Ferguson et al’s. Its timing was later, its focus was birds not people, and its take-home 
lesson less grand (and profitable) than anti-viral drug stockpiling. However, this work did 
influence measures, for instance in Thailand, to ‘restructure’ the duck farming sector – although 
for good reasons the proposed elimination of free range systems has not been widely adopted 
(Scoones and Forster 2010).   
 
The Gilbert et al model found associations differing from Ferguson et al’s assumptions, so 
reaching different conclusions. Most notably, while Ferguson et al modelled spread from low 
population density rural areas, Gilbert et al showed how spread actually occurred from higher 
population, intensive farming areas. Understanding viral natural history within a particular 
southeast Asian social-ecological setting enabled evaluation of the potential causal dynamics of 
H5N1 spread in birds, and so transmission to humans. Gilbert et al and their Asian collaborators 
knew these systems well, and their model recognised the significance of particular contexts and 
farming practices in disease ecology.   
 
People’s models: local cultural practices and understandings 
 
Alternative perspectives derive from further models, expressed not in statistical formulae or 
mathematical equations but in arguments about H5N1 from people living with disease 
emergence, spread and persistence themselves. Studies employing participatory modelling 
approaches and ethnographic methods have begun to elicit deeper understandings of the often 
highly specific social relations, cultural practices and ecologies that condition H5N1 dynamics  in 
Asia (e.g. McDermott et al, 2007; Kleinman et al., 2008; Ameri et al 2009; Forster, 2011).  
 
For example Padmawati and Nichter (2008) carried out ethnographies of formal and informal 
commodity chains, from production through distribution to marketing. They found that likely 
exposure was highly differentiated by age, gender and occupation, while risk perceptions 
significantly affected people’s behaviour, with clear implications for any age or sex-structured 
model. Forster (2011) highlighted the importance of wet market practices, trading networks and 
movement movement in potential transmission patterns. Liu (2008) explored chicken raising 
and consumption practices in South China, reflecting on the underlying social and cultural 
factors influencing disease exposure. In particular, relations and co-operative practices between 



and within households were shown to affect potential disease spread. Phan et al (2010) 
explored local management practices for free grazing ducks in Vietnam, while Beaudoin et al 
(2012) examined risk factors in the Thai context. Both studies help elaborate the social and 
farming system dynamics of emergence and transmission. Meanwhile, Zhang and Pan (2008) 
examined relationships between chicken producers and the state in eastern China, showing how 
resistance to veterinary control and public health measures are enwrapped in a wider, 
historically situated politics.  
 
Each of these studies therefore produced new data, insights and qualifications, relevant to – and 
sometimes challenging the assumptions in – other models. Moreover they offer different 
models of H5N1 dynamics, rooted in experience, cultural understandings and social relations, 
which complement mathematical process-based and pattern-based models. Yet limited in 
number, scattered and easy to dismiss as anecdote, such studies have remained relatively 
marginalised in H5N1 science and policy-making.  
 
In the Ebola case that follows, a different interaction between field realities, modelling and 
policy emerged, which gave greater space – in the end – for perspectives from participatory 
modelling to gain purchase. 
 
Case 2: Ebola 
 
Viral haemorrhagic fevers associated with wildlife in forested environments have captured 
popular as well as scientific and policy concern as deadly diseases emerging 'out of Africa' (e.g. 
Garrett 1995, Preston 1994).  Ebola haemorrhagic fever (‘Ebola’) has attracted exceptional 
attention given its ‘rapid killing’ nature (death occurs in 50-90% of clinically diagnosed cases), 
with outbreaks occurring nearly every year in East and Central Africa. While some policy 
narratives focus onlocal public health impacts, the spectre of Ebola outbreaks ‘going global’ has 
shaped policy and related scientific efforts from the outset, along with the threat of the Ebola 
virus being used in bioterror (Polesky and Bhatia 2003). The 1995 outbreak in Kikwit, DRC and 
worry about global spread was, for instance, key to building political momentum for WHO’s 
revised International Health Regulations in 2005 (Heymann et al, 1999). Meanwhile Ebola’s 
natural reservoir remained enigmatic until its recent, relatively clear association with African 
bats (Feldman and Geisbert 2011, Leroy et al 2009). In this context, Ebola has been the focus of 
several sorts of modelling, with different approaches and goals.  
 
The course and control of epidemics: epidemiological process-based models  
 
Mathematical epidemiological models have been used to elucidate the transmission dynamics of 
Ebola epidemics once underway, and to assess the effects of control measures. Two prominent 
modelling efforts by Chowell et al (2004) in the Journal of Theoretical Biology, and Legrand et al 
(2007) in the Journal of Epidemiology and Infection paramaterised their models using data from 
the well-documented Ebola outbreaks in DR Congo 1995 and Uganda 2000.  
 
These efforts came at a particular policy moment. Justified by both global outbreak narratives 
and local public health concerns, by the 1990s a standard set of ‘at source’ control measures 
dominated the Ebola response programmes of international agencies such as the WHO and 
Centers for Disease Control (CDC). Once an outbreak was reported, externally-led teams would 
establish isolation units for the infected; implement barrier nursing techniques; track and 



control those who had had contact with infected individuals; limit supposedly ‘dangerous’ local 
behaviours such as washing and burying corpses, and provide health education (Hewlett and 
Hewlett, 2008, p5). A decade on, there was understandable policy interest in evaluating, and 
hopefully legitimising, this intervention package. 
 
Chowell et al fitted data to a simple deterministic SEIR (Susceptible, Exposed, Infectious, 
Removed) epidemic model, allowing an estimate of the basic reproductive number R0 for Ebola 
- the epidemic growth if everyone is susceptible - and the final epidemic size.  Using the model 
they quantified the impact of intervention measures on the disease transmission rate, and the 
sensitivity of the final epidemic size to the timing of interventions. 
 
The models suggested potentially devastating pandemics in the absence of control measures. 
But while Chowell et al analysed the impact of several uncertainties, including viral sub-type, 
incubation period and infectious period, they ignored others. For instance the model assumes 
uniform population mixing, and so uniform probabilities of infectious contact – neglecting 
variations in people’s social interactions and hence contact in different settings, and by gender, 
age, and status. Legrand et al refined this assumption, compartmentalising their otherwise 
similar model into three stages to account for transmission in the community, in the hospital 
and during traditional burial. They found that the burial component accounted for the highest 
proportion of R0 in DR Congo, whereas the community component was more significant in 
Uganda. Yet even this model could not attend to socially-differentiated contacts in each setting, 
and their possible implications. 
 
To quantify the impact of control measures, both models assumed interventions to be  an 
identical ‘package’ in each epidemic, drawing on data concerning their timing. Chowell et al 
concluded that control measures ‘reduce the final epidemic size by a factor of 2’, with speed of 
intervention critical to minimising final epidemic size (2004, p1). Legrand et also concluded that 
intervention speed, as well as rapid hospitalization, were key to epidemic control. In these 
cases, modelling focused on interventions ready in place. Not surprisingly, as they used data 
from these interventions, the models ended up justifying ex post-hoc exactly this intervention 
approach, albeit with added exhortations for greater speed and effectiveness. The policy value 
of modelling here was thus not in framing the form of intervention, but in generating 
authoritative justification for established, top-down, outbreak control approaches.  
 
Yet this modelling-supported policy conclusion overlooked significant differences between 
intervention styles in Congo and Uganda. As discussed further below, by Uganda 2000 outbreak 
control strategies were building on local cultural understandings and community involvement – 
so intervention effectiveness in the two epidemics might reflect not just timing, but also very 
different approaches. Also, Chowell et al’s model was premised on a clear distinction between 
R0 ‘before’ and ‘after’ intervention; yet as we show below, existing community-based social 
protocols were already in play, potentially undermining such assumptions. Finally, both models 
assume that public health interventions are introduced smoothly with full local compliance. Yet, 
again, this assumption is contradicted by local evidence, potentially undermining both the 
models themselves and their policy recommendations. 
 
The macro-ecology of Ebola risk - pattern-based models 
 



In parallel, pattern-based, macro-ecological models have been developed to create risk maps for 
Ebola, as part of efforts to identify the natural reservoir for the virus (before it was more firmly 
linked to bats) as well as to target surveillance..  Dominating the literature are ecological niche 
modelling approaches developed by researchers at the University of Kansas and CDC Atlanta 
(Peterson et al 2004), and models of the relationship between Ebola outbreaks and 
environmental/climatic conditions led by researchers at NASA (Pinzon et al 2004). Pitched at a 
much larger, African regional/continental scale than models of particular outbreaks, these 
efforts both exploit the growing availability and sophistication of satellite data.  
 
Thus Peterson et al (2004) related the geo-spatial location of documented Ebola outbreaks 
during 1981-2003 to ‘ecological niches’ derived from 11 global datasets covering topographical, 
hydrological and climatic conditions, generating spatial risk maps.Potential geographic 
distributions were then modelled using a ‘Genetic Algorithm for Rule-set Prediction (GARP)’, 
which relates the ecological characteristics of occurrence points to those of points sampled 
randomly,  thus developing and then testing a series of decision rules that best summarize 
factors associated with Ebola presence, combining the 20 best predictions into a GIS map. 
Noting that Ebola outbreaks have indeed been recorded in places across the full geographical 
extent of these ecological conditions (but not outside them), they suggest that this provides a 
confident basis for targeting surveillance and ‘viral reservoir hunting’ efforts. 
 
Peterson acknowledged several uncertainties in the model, including the limits of small sample 
sizes, and the complex relationships between ecological dimensions and distributional limits. 
Such models are also framed by the choice of ecological variables. The map focused on climate 
and topography, but would a rather different one have emerged if, for instance, vegetation or 
land cover had been included? Moreover as Peterson et al acknowledge, spatial ecological niche 
modeling correlates outbreaks with a static snapshot of environmental conditions, missing any 
attention to environmental dynamics over time.  
 
Such temporal dynamics were, however, the focus of Pinzon et al, who linked the same 1981-
2003 outbreaks with bi-monthly time series satellite data. They showedthat the majority of 
Ebola outbreaks wereclosely associated with sharply drier conditions at the end of the rainy 
season. They suggest that such conditions may act as trigger events to enhance transmission of 
the virus from its (then unknown) reservoir to humans, and that this link might help unravel the 
enviro-climatic and vegetational coupling of Ebola outbreaks, informing the development of 
early warning systems. 
 
Again, the researchers acknowledge a range of uncertainties, including ‘outlier’ outbreak 
incidences. They offer the model as a step along the way in highlighting conditions favourable 
for Ebola virus transmission – information critical, not least, for health care workers in Africa. 
Indeed, in a subsequent presentation  (Campbell and Pinzon 2009), they report on further plans 
to specify such conditions more precisely, taking advance of the growing availability of higher 
spectral resolution data. Thus a process is envisaged whereby ever more accurate and highly 
resolved pattern data over space and time will enable better and better risk predictions. But will 
they ever eradicate all uncertainties? Can such models ever fully encompass the complex 
interactions between virus, host, ecological, vegetation, climatic and topographical conditions? 
And what if non-equilibriium dynamics are acknowledged – non-linear interactions between 
climatic and vegetation variables (cf. Sprugel 1991)? Non-equilbrium dynamics conceptually 
challenge predictions founded on linear assumptions or probabilistic notions of risk.  Moreover 



social, ecological and historical research shows African forests to have been shaped by 
interacting, non-linear human and environmental influences over centuries and millennia 
(Fairhead and Leach 1998); dynamics invisible in disease risk maps. 
 
Pattern-based models thus contribute to images of forests as either ‘virgin’, pristine ecosystems 
in need of protection, or ‘viral’, places harbouring dangerous pathogens in need of containment 
( Hardin and Froment, forthcoming). In policy terms, these images combine in prescriptions 
focusing on reducing contact between people and wildlife, through protected areas or 
resettlement. More broadly, Jones et al (2008:xx) suggest that ‘efforts to conserve areas rich in 
wildlife diversity by reducing anthropic activity may have added value in reducing the likelihood 
of future zoonotic disease emergence’. Thus arguments about forest ecosystems and diseases 
such as Ebola can be mobilised to support ‘fortress’ conservation measures - despite their 
negative effects on local rights and livelihoods (Fairhead and Leach, 1998). There is thus 
congruence between particular zoonotic disease modelling approaches, and particular policy 
narratives not just related to disease, but in environment and conservation more generally. 
 
Local cultural models - understanding social and ecological dynamics   
 
In contrast with the ‘gaze’ respectively from numerical datasets and from space offered by 
process-based and pattern-based models of Ebola, models derived from ethnographic and 
participatory research offer contrasting views ‘from the ground’. 
  
Concerning the ecology of Ebola emergence and risk, a recent review (Feldman and Geisbert 
2011) argued for further field-based studies. Several scientistsnow argue that understandings of 
pathogen dynamics within wildlife populations should be combined with social and 
anthropological understanding of people-wildlife interactions and risk perceptions in diverse 
local settings. Thus for instance in Cameroon, researchers linked to the Global Viral Forecasting 
Initiative have been studying the interrelationships of bushmeat hunting, local  perceptions, 
land use change and settlement expansion, and the emergence of novel diseases including Ebola  
(Wolfe et al 2005, LeBreton et al 2006). Extending such approaches to attend more deeply to 
local people’s own cultural logics,  alternative, policy-relevant perspectives on ecology and 
disease might emerge.  Thus rather than separate people and wildlife, local understandings 
could provide the basis for integrated ‘One Health’ interventions compatible with cultural values 
and livelihood priorities.  
 
Turning to the management of Ebola outbreaks, through pioneering ‘outbreak anthropology’ by  
Barry Hewlett and others since the Uganda 2000 epidemic (Hewlett and Hewlett 2008)  Ebola 
has come to exemplify powerfully in global policy circles the value of attending to local cultural 
logics in the design and implementation of control measures. However the science-policy 
context for interest in local Ebola knowledge was not ‘where there is no data’, the typical trigger 
for institutional interest in participatory epidemiology in low-income country settings. Rather, it 
was a context of ‘where public health interventions fail.’  
 
As already discussed, many dominant policy narratives about Ebola, and the epidemic models 
they are co-constructed with, portray local populations as ignorant, blaming their social and 
cultural practices – such as traditional burial - for hastening Ebola transmission, and targeting 
them for external reform. Yet such top-down control has often met local resistance. In Gabon in 
1995-6, for example, American and French Ebola control measures were perceived as so 



inappropriate and offensive by villagers that, when international teams arrived to address a 
further outbreak there in 2001, they met fierce local armed opposition (Milleliri et al, 2004). It 
was such experiences – and the growing discomfort of field scientists in control teams so 
resented – that led to anthropologist Hewlett’s inclusion in the team addressing the 1999-2000 
Ebola outbreak in Uganda. 
 
Using ethnographic and participatory approaches, Hewlett’s Ugandan work explored how  
Acholi people understood and responded to Ebola – a disease that to them was not ‘emerging’ 
but a long-embedded part of life. Local concepts encompassed both endemic and epidemic 
(gemo) disease, integrating biomedical, wind-based and spiritual explanations of cause (Hewlett 
and Hewlett 2008). Once the Acholi identified gemo, they would implement control protocols, 
including isolating the patient in a marked house; having a survivor feed and care for the 
patient, and limiting general movement. The ‘modelling’ approach of Hewlett and colleagues, 
undertaken in interaction with WHO and CDC outbreak teams, enabled such local cultural logics 
and protocols to be successfully integrated into response strategies. Over the following years, 
including anthropologists on Ebola outbreak control teams became more institutionalised within 
WHO. This has helped to shift outbreak control practices towards a greater focus on community 
engagement, and on attuning technologies and practices to their particular social contexts 
(Leach and Hewlett 2010).  
 
 
Yet the policy – and political – implications of attending to local cultural logics go beyond simply 
blending local knowledge into standard scientifically-justified responses. Rather, local cultural 
understandings are co-constructed with alternative policy narratives, such as those upholding 
customary practices or urging that local rights and ethical concerns be balanced alongside 
disease control aims (see Calain et al, 2009, Jeppsson, 2002, Bausch et al 2007).   
 
Modelling and the politics of policy 
 
In each of these case studies, we therefore see a range of different models, shaped by particular 
scientific and social practices, and policy and funding contexts. In each case, particular models 
offer support to – indeed are co-constructed with - particular policy narratives about the disease 
problem. These different models have contrasting social and political lives. Yet the ways models 
and their associated policy narratives have interacted – and the politics of this interaction – have 
been very different. 
 
In the case of H5N1, a narrative around ’control at source’ linked to drug stockpiling and 
containment recommendations from the Ferguson et al model gained substantial policy traction 
in the context of heightened public, media and political panic. Spatial ecological models looking 
at causes and drivers questioned some of the assumptions, and focused attention on particular 
farming systems as sources of risk, yet the standard framing from the original model persisted. 
Similarly, more grounded ethnographic understandings barely got a look-in, as they complicated 
and disturbed the outbreak narrative dominating policy circles. Yet, when ‘the big one’ didn’t 
happen, more reflection and appreciation of local complexities emerged, along with discussion 
of  more integrated ‘One Health’ approaches (Pfeiffer et al 2012). That is until the next influenza 
scare, this time H1N1 fromMexico, when once again an antiviral drug response dominated 
policy discussions, informed by similar models (Forster 2013).In the case of Ebola, there is a 
continued dominance of policy approaches to outbreak control at source, underwritten by 



policy narratives focused on both global and local public health. However the intervention 
approaches of the WHO, CDC and related agencies have shifted over the last decade to become 
more locally culturally sensitive, drawing on anthropological insights and field pragmatism. 
Policy narratives around local cultural logics and local justice hold greater sway, even if this is 
fragile. At the same time, there is growing research and policy interest in interdisciplinary 
understandings of disease emergence, towards One Health approaches.  
 
A variety of processes  contribute to this co-construction of modelling, power and policy. In 
relation to any given model, these constitute key dimensions of what we have termed its social 
and political life; yet they also shape the ways different models interact. First, socio-technical 
processes - the tools and  technologies available to and applied by modellers -  are key. These 
have changed dramatically during the last decade, especially with rises in computer power, 
virtual and satellite imaging, and information technologies. This has hugely increased the 
availability of and processing capacity for certain sorts of data – large scale secondary datasets,  
satellite data – but notably not others. This in turn shapes the ‘gaze’ on zoonotic disease, 
favouring the gaze from space, or the gaze from databases – as we saw for risk maps of Ebola, 
and mathematical models of H5N1 - but not the gaze from the ground.. Second, co-construction 
is shaped by relations amongst disciplines, and more especially, hierarchies within them. 
Contextual power relations between natural and social sciences, and between ‘central’ 
biomedical/veterinary sciences and those deemed more peripheral such as ecology, are legion 
in epidemic and zoonotic disease science, despite calls for interdisciplinary approaches. But 
arguably, even more significant is the ascendancy of quantitative modelling within a whole 
range of disciplines, from ecology to epidemiology,  promoted and valued over and above older 
more holistic, natural history focused approaches. This is shaped by reflected in forms of 
prestige, promotion, visibility, publication impact, and success in securing funding applications. 
The ascendancy of the quantitative in turn renders the qualitative insights from ethnographic 
and participatory work more easily dismissable as ‘mere anecdote’ – certainly the case for H5N1 
in southeast Asia. 
 
Third, these broader socio-technical and disciplinary processes shape the micro-practices of 
modelling itself. They condition the details of how scientists draw boundaries, make 
assumptions, address or black-box issues and uncertainties, choose forms of model 
parameterisation, select, collect and process data, manipulate technologies, and draw 
conclusions. Such micro-practices, along with the  significance of scientists’ social values  and 
positions in shaping their particular readings of the world,  are central foci  of the sociology of 
modelling (e.g. Magnani and Nercessian 2009, Morgan and Morrison 1999, Mansnerus 2012).  
While a detailed exploration for H5N1 and Ebola is beyond the scope of this article, the case 
studies have hinted at their significance – for instance in the very different ways Asian 
researchers with embedded experience of rural farming systems, and London-based scientists 
embedded in global networks, approached the task of modelling H5N1 in Thailand; or the 
contrasting Ebola modelling practices of NASA laboratories and anthropologists with decades of 
African experience. .  
 
Fourth, the politics of science advice and funding interplay with these modelling processes. 
Scientists and modellers need funding for their work, and face growing pressures to 
demonstrate ‘impact’. Policy-makers need justifications for action, and face growing pressures 
for evidence-based policy. These pressures shape a mutual construction of science and policy 
that plays out in terms of who and what gets funded, who is invited onto policy committees and 



to give briefings, and which forms of evidence are taken up – and which are not. In situations of 
outbreak emergency or pandemic threat, premium is often on those scientists who can deliver a 
model quickly, with the right appearance of legitimacy in terms of current norms, and likely to 
deliver conclusions not too far from established political and policy commitments. Thus for 
Ebola, epidemiological models that supported well-funded international outbreak control 
measures found a ready welcome amongst policy agencies; participatory models struggled for 
legitimacy until dramatic local resistance, provoking policy failure, forced a rethink. For H5N1, in 
May 2005 a Nature editorial bemoaned that the avian influenza response was being conducted 
‘on a wing and a prayer’ (Nature 2005b: 385), yet disaster with millions dead was potentially 
imminent. This was not ‘a Hollywood fantasy’, they claimed – it was ‘time for action’. Four 
months later the Ferguson and Longini models were published, into a policy and political context 
desperate for ‘evidence’. 
Finally,  wider politics shape what these policy commitments are – and hence which kinds of 
modelling are valued and supported. Details of the politics of zoonotic disease policy processes 
are beyond the scope of this article, but  the stakes and imperatives  are broad and diverse. 
They extend from security and military concerns, to commercial interests in sustaining 
businesses amidst epidemics or selling drugs and vaccines, to public fears and anxieties, often 
stimulated by media. In situations of emergency or threat, the political imperative for 
governments or agencies to ‘do something’, and advance high-profile claims and actions, may 
become paramount, perhaps overriding longer-standing political and bureaucratic commitments  
such as to routine public health.  
 
 Conclusion 
 
To address the inherent challenges of understanding complex zoonotic disease dynamics where 
incomplete knowledge persists requires, we suggest, a different approach to modelling and its  
relationship with  policy, as part of an integrated One World, One Health approach.  Reliance on 
a single model is always dangerous, no matter how careful the modellers. No model can claim to  
capture everything; reality is too complex to model in full. In the heat of an  outbreak moment, a 
simple model often carries much weight, as we saw particularly with the Ferguson et al H5N1 
model. But given its  limited data and inappropriate assumptions, was the ensuing purportedly 
‘evidence based’ policymaking any less ‘on a wing and a prayer’ than before?  Could it have 
been improved by more effective deliberation on the assumptions, data sources and parameter 
estimates? Could a more empirical look at people-ecology-disease relationships have helped 
refine the models’ epidemiological understandings? Would alternative knowledges and 
perspectives – of people living with poultry, managing free grazing ducks and taking them to wet 
markets across the region - have provided a better grounding for, and some important 
questioning of,  dominant policy actions? Would this have saved millions of dollars and much 
more besides? We believe potentially, yes. In the case of Ebola, the incorporation  of 
ethnographically-grounded approaches along with epidemiological models has already changed 
policy. Would similar attention to local knowledge and cultural logics around environment-
disease interactions question dominant policy and open up new opportunities? Again, we 
believe potentially yes. 
Thus  a multi-model approach is, in our view, essential. Different models, as we have shown  
show different things, and are based on different assumptions, world views and sources of 
information. Of course they come up with different results. Choosing one over another simply 
does not make sense. Moreover in the heightened politics of decision-making in epidemic, and 



certainly pandemic, contexts, choice of model reflects suitability to the prevailing policy 
narrative, as much as the efficacy of the model itself.  
 
How to organise a process of triangulation across forms of modelling expertise and data sources, 
and how to facilitate a deliberation between different models, taking account of realities on the 
ground, remains a challenge – yet one that any integrated, holistic ‘One Health’ approach must 
grasp. It requires both model-guided fieldwork  and fieldwork-guided modelling. The challenge is 
just not disciplinary, data and model integration, but more importantly, deliberation around 
framing assumptions, cultural understandings, policy narratives, politics and values. In this, the 
selective partiality of particular models – and their  social and political lives -  needs to be made 
explicit, so enabling debate, in particular contexts and settings, about what each might 
contribute, in whose interests and with what social and political implications. This will require 
reflexivity, humility and interaction amongst modellers, policymakers and those living with 
diseases, and an embrace of multiple sources of evidence and analysis in policy. Given 
uncertainties, ambiguities and multiple framings, science advice to policy must be necessarily 
plural and conditional, even in – and perhaps particularly in – conditions where outbreaks are 
possible or happening. 
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