Vol. 43, No. 4

CONTENTS

April, 1997

ORIGINAL ARTICLES
Quantifying morbidity in pregnant women in a rural population in Tsholotsho district in Zimbabwe .......... 93
Guillain Barre Syndrome (GBS): an appraisal .......... 99
Sentinel surveillance identifies a high HIV prevalence in a rural population in Zimbabwe ..........
Clusters of measles outbreaks in a special group of the Midlands province, Zimbabwe .............
Risk factors associated with contracting dysentery during Shigella dysenteriae type 1 outbreak in Harare, 1993 ...........................................
Alteration of paracetamol pharmacokinetics in BALB/C mice infected with Schistosoma mansoni .................................................................

PLN Sikosana, D Hlabangana, I Moyo
S El Zunni, PS Prakash, I Busnaina
M L'Herminez, MT Mbizvo
LK Shodu, DG Dhlakama, C Zishiri,
CS Zvavamwe, E Makhulumo
KS Mwenye, N Gumbo, M Mavela, D Peterson,
S Siziya, G Woelk
S Mukanganyama, YS Naik, JA Hasler

CASE REPORTS
Successful management of ectopic pregnancy with a single injection of methotrexate: a case report ........
Tubulo-interstitial and glomerular changes in the case of Denys-Drash Syndrome ..................
Pleomorphic lipoma — an unusual variant of lipoma that may be misdiagnosed as liposarcoma ....

A Krolkowski, K Janowski, Z Hordynska,
JV Larsen ................................................................. 116
EJ Lancaster, L Banach ........................................... 117
BJ Olasode, E Agbakwuru, WO Odesanmi .......... 119

BOOK REVIEWS
Otolaryngology in Asian countries, edited by S Prasansvk, A Na Nakorn, C Bunnag, C
Siriyananda ................................................................. 121

CG Tumushime-Buturo
Risk factors associated with contracting dysentery during *Shigella dysenteriae* type 1 outbreak in Harare, 1993

*S MWENE, *N GUMBO, *M MAVELA, **DE PETERSON, ***S SIZIYA, ***G WOELK

**Objectives:** To determine risk factors associated with contracting dysentery.

**Sign:** Matched case control.

**Type:** City of Harare.

**Object:** 90 cases and 90 matched controls.

**Main Outcome Measures:** Odds ratios for risk/protective factors for contracting dysentery.

**Methods:** Using conditional multiple logistic regression analysis, significant factors found were having eaten undercooked meat (OR=15, 95% CI 3 to 64), hands coming in contact with stored water (OR=12, 95% CI 3 to 48) and washing hands prior to eating (OR=0.3, 95% CI 0 to 0.8).

**Conclusions:** There is a need to increase public awareness on improving personal hygiene. Hygienic ways of drying meat at home should be sought.

**Introduction**

Towards the end of 1992, there were numerous reports of dysentery cases from Harare and most provinces of Zimbabwe. According to reports from the districts and the media, the disease was characterized by bouts of bloody diarrhoea, tenesmus and general body weakness. Of 4,915 patients with dysentery who presented to the two municipal hospitals, 149 died, giving a case fatality rate of 3%.1 Laboratory investigations confirmed that *Shigella dysenteriae* type-1 was the predominant cause of the dysentery outbreak in Harare.

A matched case control study, was carried out in the City of Harare from 26 November to 1 December, 1993 in order to document risk factors associated with contracting dysentery in this environment.

**Materials and Methods**

**Case Definition.**

Cases (n=90) were selected from both children and adult inpatients and outpatients presenting with dysentery at Beatrice and Wilkins infectious disease hospitals during the period 26 November to 1 December.

For the investigation, a case of dysentery was defined as a Harare resident who presented with bloody diarrhoea and at least three bowel motions per day, or more in 24 hours, and who had not been outside Harare in the 10 days prior to illness onset.

**Control Definition.**

Controls (n=90) were selected using the addresses of case persons. Matched controls (by sex and five year age group), who had not been outside Harare in the 10 days prior to the interview and had not had diarrhoea in the four proceeding weeks, were sought from the household closest to each case address. In the event of not finding any body from the household closest to the case address, a matching control person was sought from the nearest and then next nearest household, until a matching control person was found. Controls were interviewed from 26 November to 1 December.

**Data Collection.**

Information was collected using a structured questionnaire that included age, sex, address, education level, occupation, history of any family member who suffered from diarrhoea, symptoms of the illness (for cases), and possible risk/protective factors (food stuffs eaten, water and sanitation and preventive knowledge) for the disease experienced five days prior to onset of illness (for cases), and five days prior to interviews (for controls).

**Analysis.**

A matched two by two analysis for each factor was conducted using the Epi Info software. A multivariate analysis to control for other various risk factors by conditional multiple logistic regression was conducted using Egret software. All variables found to be significant in the matched two by two analysis were entered in the conditional logistic model using stepwise regression. Odds ratios and 95% confidence intervals for variables significant (p<0.05) in the logistic regression model are presented.

**Results**

Dates of illness onset ranged from 11 to 29 November 1993. Seventy six percent of the cases had tenesmus and 62% experienced fever (temperature >37.5°C).

---

Correspondence to:
Dr KS Mwenye
No. 8 Chinyika Court
First street
Marondera, Zimbabwe
Telephone: 263-4-24207/8
Among the many factors considered in a matched two by two analysis, the factors listed in Table I were significantly associated with contacting dysentery.

Table I: Significant factors associated with contracting dysentery in matched two by two analysis.

<table>
<thead>
<tr>
<th>Factor</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hands coming in contact with stored water</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Eating dried meat</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Eating dried vegetables</td>
<td>0.001</td>
</tr>
<tr>
<td>Being a lodger</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Storing drinking water in the house</td>
<td>0.019</td>
</tr>
<tr>
<td>Washing hands prior to eating</td>
<td>0.003</td>
</tr>
<tr>
<td>Eating oranges</td>
<td>0.024</td>
</tr>
<tr>
<td>General knowledge about the importance of hand washing</td>
<td>0.008</td>
</tr>
<tr>
<td>Being knowledgeable about the importance of covering food stuffs</td>
<td>0.014</td>
</tr>
<tr>
<td>Eating apples</td>
<td>0.008</td>
</tr>
<tr>
<td>Eating mangoes</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Eating mazhanje</td>
<td>0.020</td>
</tr>
<tr>
<td>Ignorant about modes of transmission</td>
<td>0.017</td>
</tr>
</tbody>
</table>

On conditional multiple logistic regression analysis, significant factors were having eaten dried meat (OR=15, 95% CI: 3 to 64, p=0.005), hands coming in contact with stored water (OR=12, 95% CI: 3 to 48, p=0.001) and washing hands prior to eating (OR=0.3, 95% CI: 0 to 0.8, p=0.008)

**Discussion**

One of the limitations of our matched study is that we could not ascertain whether age, sex and neighbourhood were risk factors (as we matched on these factors). Interview bias could have contributed to findings of non significant factors such as, use of a communal dish for washing hands. Other non significant findings such as non availability of a toilet at the homestead could have been due to small sample sizes which have also been reflected in the wide confidence intervals.

In our study the major risk factors for contracting dysentery in Harare were eating dried meat and hands coming in contact with stored water. Hand washing prior to eating was found to be a protective factor.

To our knowledge this is the first time dried meat has been found to be a risk factor for dysentery. Dried meat is frequently eaten in Zimbabwe, it is prepared by hanging it in the open air for several days so as to dry it. During this process it can be contaminated by houseflies and other vectors such as cockroaches. Other studies have shown that vectors such as house flies and cockroaches may transfer organisms into non-refrigerated food items, in which they can multiply to an infectious dose.

We found that storing water at home, and especially hands coming into contact with stored water, was associated with the illness. Water storing at home was prompted by water rationing introduced in Harare in 1991, during which time water was available only for a few hours per day. The majority of case patients continued with the practice long after the water rationing was stopped. This practice should be discouraged, especially in a place like Harare where tap water is available in all residential areas.

Our finding of the practice of hand washing prior to eating food as a protective factor for the illness confirms other studies and points at the need for continuing intervention.

In conclusion, there is an urgent need to increase public awareness on improving personal hygiene through health education campaigns on the importance of practices such as hand washing, and hygienic ways of drying meat at home.

**Acknowledgements**

We would like to thank the Director of City Health, Dr Ol Mbengeranwa for allowing us to carry out the study. Special thanks go to Dr Anne Peterson for assisting in the compilation of the literature review. To the respondents we say thank you very much for your participation in the study.

**References**
