Edited by
Charles F. B. Nhachi
and
Ossy M. J. Kasilo
PESTICIDES IN ZIMBABWE
Toxicity and Health Implications

Edited by
Charles F. B. Nhachi
and
Ossy M. J. Kasilo

University of Zimbabwe Publications
Harare
Chapter 8
Residues of organochlorine pesticides in human milk.
Ordias Chikuni and Charles F. B. Nhachi 73

Chapter 9
Occupational exposure to DDT among the mosquito-control sprayers in Zimbabwe.
Charles F. B. Nhachi, Wilbert Murambiwa, Rosemary Urombo and Ossy M. J. Kasilo 81

Chapter 10
Organochlorine pesticide residues in inland waters in Zimbabwe.
Mark F. Zaranyika and John M. Makhubalo 89
Summary 89
Introduction 89
The aquatic environment in Zimbabwe 89
Evidence of pesticide residue build-up in lakes 91
Pollution from tsetse- and malaria-control sprays 98
Conclusion 106
Acknowledgements 106
References 106

Chapter 11
Metabolism of pesticides.
Ossy M. J. Kasilo and Charles F. B. Nhachi 107

Chapter 12
Management of pesticide poisoning.
Charles F. B. Nhachi and Ossy M. J. Kasilo 111
Summary 111
Introduction 111
Management of pesticides 112
Organophosphates and carbamates 112
Organocholines 113
Herbicides 113
Pyrethroids 114
References 115
8
Residues of Organochlorine Pesticides in Human Milk

Ordias Chikuni and Charles F. B. Nhachi

Summary
Levels of residues of chlorinated hydrocarbons p,p-DDT, p,p-DDE, p,p-TDE, x-, B-, y-hexachlorocyclohexane (HCH), heptachlor epoxide, dieldrin and polychlorinated biphenyls (PCBs) in the milk of 40 Zimbabwean mothers living in the Greater Harare area were analysed. Of all the milk samples analysed, relatively low residue levels of x-, B-, and y-HCH, peptochloroperoxide and dieldrin were detected in 58, 100, 63, 13 (not statistically significant) and 65 per cent respectively. Traces of the PCB congener 2,2,4,5,5'-pentachlorobiphenyl (PCB 101) were found in 15 samples. One sample contained traces of 2,3',4,4',5-pentachlorobiphenyl (PCB 118). From this study, small though the sample was, it seems social status, educational background and living conditions are important demographic variables influencing the frequency distribution of residue levels of sum DDT in the mother's milk.

DDT, Dichlorodiphenyl trichloroethane, has been in use in Zimbabwe for four and half decades, from 1946 to 1982. DDT was registered in Zimbabwe for both public health and agricultural use such as the control of Anopheles mosquito and tsetse fly, vectors of malaria and sleeping sickness/Nagana respectively, agricultural pests such as maize stalkborer (Busseola fusca), cotton cutworm (Agrotis spp), and cotton bollworm (Heliothis spp). There is also evidence that DDT has been used as an insecticide to control pests of stored grain since 1982. DDT is registered by the Ministry of Health's Hazardous Substances Control Board as a “hazardous substance class 1”, that is, a chemical that can endanger humans, domestic and wild animals and its procurement and use is restricted to cover tsetse and mosquito control only.

Environmental contamination by DDT in Zimbabwe is, therefore, related to its use as a vector control agent. DDT could find its way into the human body when inhaled as house dust, after the houses have been sprayed with DDT during the mosquito control exercise. However, the major source of DDT intake in the general population, accounting for over 90 per cent of individuals positive for DDT in blood or fat, is food.

Studies have been carried out in Zimbabwe to assess pesticide residue levels in serum (Mpofu, 1986). Since the first report of the presence of DDT in
human milk in 1951 by Laugh et al., a number of studies have been carried to assess the presence of DDT residues in human milk (Jensen, 1983). Bouwman et al. (1990) determined the concentrations of DDT and its metabolites DDE and DDD in the breast milk of KwaZulu (South Africa) mothers. It was found that DDT and DDE in breast milk increased after the application of DDT.

In Zimbabwe, Chikuni et al. (1991) published results of a survey and analysis of "Residues of organochlorine pesticides in human milk from mothers living in the Greater Harare city of Zimbabwe". This chapter is based on discussion and conclusions of the results from that study.

Mothers who had lived in four of the high or low density suburbs, around the capital for more than five years were randomly selected and enrolled into the study. The four high density suburbs selected are Mbare, Epworth, Mutakos-Kambuzuma and Dzivarasekwa and the low density suburbs are Milton Park, Queensdale, Avondale and Borrowdale. A total of 40 healthy breast-feeding mothers were interviewed using a pre-tested questionnaire and provided breast milk samples for analysis. The average age and parity of the mothers were 35 years and 1-3 respectively.

Milk samples were collected by means of manual expression. The samples (10 ml) were preserved with 50 ml of 33 per cent formalin, taking special care to avoid contamination. All samples were stored at -10°C until analysis. The milk samples were homogenized with an Ultrasonic homogeniser. Extraction, clean up and analysis of samples were carried out according to the modified method of Brevik (1978). PCBs were determined using gas chromatography against individual PCB isomers. The data obtained was evaluated for significance (P < 0.05) by the Wilcoxon's two-sample test (Hodges and Lehmann, 1970).

Milk-supplying mothers were classified into two groups according to socio-economic status, educational background and living conditions. Group 1 mothers (14) lived in the low density suburbs and had a relatively high socio-economic status and dietary habits, a good knowledge of pesticides and their use. Group 2 mothers (26) lived in the high density suburbs and had a relatively low socio-economic status, a basic educational background, poor dietary habits and had poor knowledge of pesticides and their use.

The statistical data is expressed on a fat weight basis as arithmetic mean together with range for the single determination of each of the samples. Median values are also given for sum DDT and DDT/DDE ratios (see Table 1).

The results are expressed as means. The ranges are listed in parentheses. There were no significant differences between corresponding results from the two groups, when p > 0.05. Group II mothers showed high mean levels of sum DDT compared to that of Group I mothers. The highest individual sum DDT in Group II was six times higher than that of Group I. The ratio DDT/DDE was higher in Group II mothers. The main organochlorine contaminants found in all the 40 samples were p,p'-DDT and the more persistent metabolites, p,p'-TDE and o,p'-DDT.
Table 1: Residues (ppm, mg per kg fat weight) of sum DDT and the ratio DDT/DDE in Zimbabwe human milk.

<table>
<thead>
<tr>
<th>Group</th>
<th>Sum of DDT</th>
<th>DDT/DDE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Group I & II</td>
<td>6.00 (0.59-55.50)</td>
<td>3.22 (0.59-55.53)</td>
</tr>
<tr>
<td>Group I</td>
<td>3.44 (0.63-8.31)</td>
<td>3.10 (0.63-8.31)</td>
</tr>
<tr>
<td>Group II</td>
<td>7.39 (0.59-55.50)</td>
<td>3.97 (0.59-55.53)</td>
</tr>
</tbody>
</table>

Table 2: Residues (ppm, mg per kg fat weight of p, p'-TDE, o, p'-DDT and p,p'-DDE in human milk

<table>
<thead>
<tr>
<th>GROUP</th>
<th>FAT</th>
<th>TDE</th>
<th>o,p'-DDT</th>
<th>p,p'-DDT</th>
<th>p,p'-DDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>II & II</td>
<td>3.0 (0.3-7.7)</td>
<td>0.43 (0.00-10.67)</td>
<td>0.34 (0.00-3.83)</td>
<td>2.39 (0.00-38.16)</td>
<td>2.53 (0.40-9.01)</td>
</tr>
<tr>
<td>40/40</td>
<td>24/40</td>
<td>39/40</td>
<td>40/40</td>
<td>40/40</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2.6 (0.74-4.20)</td>
<td>0.94 (0.00-0.15)</td>
<td>0.11 (0.00-0.41)</td>
<td>0.90 (0.00-3.98)</td>
<td>2.18 (0.52-5.00)</td>
</tr>
<tr>
<td>14/14</td>
<td>5/14</td>
<td>13/14</td>
<td>13/14</td>
<td>14/14</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3.3 (0.3-7.7)</td>
<td>0.64 (0.00-1.67)</td>
<td>0.47 (0.00-3.83)</td>
<td>3.19 (0.12-38.16)</td>
<td>2.71 (0.40-9.01)</td>
</tr>
<tr>
<td>26/26</td>
<td>19/26</td>
<td>25/26</td>
<td>26/26</td>
<td>26/26</td>
<td></td>
</tr>
</tbody>
</table>

Residues of the most persistent metabolite, p,p'-DDE were observed in all the samples and group II mothers had the highest level of contamination of this metabolite.

Table 3 below shows mean residue level (in ppm, mg per kg of fat weight) of other organochlorine pesticides such as x-, B-, y-hexachlorocyclohexane (HCH), heptachlorepoxide and dieldrin observed in the two groups. The table shows that the mean levels of the organochlorine pesticides was generally very low compared to that of the other contaminates, that is, DDT and its metabolites analysed. The highest mean level of the pesticide observed in this table was B-HCH in Group I mothers. In general, a great variation among individual samples of the level of contamination was observed.
Table 3: Residues (ppm, mg per kg fat weight) of α-HCH, B-HCH (lindane) heptachlor epoxide and dieldrin

<table>
<thead>
<tr>
<th>Group</th>
<th>α-HCH</th>
<th>B-HCH</th>
<th>γ-HCH</th>
<th>Heptachlorepoxyde Dieldrin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & I</td>
<td>0.03</td>
<td>0.84</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.00-0.16)</td>
<td>(0.00-2.63)</td>
<td>(0.00-0.49)</td>
<td>(0.00-0.07)</td>
</tr>
<tr>
<td></td>
<td>23/40</td>
<td>40/40</td>
<td>25/40</td>
<td>5/40</td>
</tr>
<tr>
<td>I</td>
<td>0.04</td>
<td>1.23</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.00-0.16)</td>
<td>(0.34-2.58)</td>
<td>(0.00-0.49)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10/14</td>
<td>14/14</td>
<td>8/14</td>
<td>0/14</td>
</tr>
<tr>
<td>II</td>
<td>0.02</td>
<td>0.62</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.00-0.08)</td>
<td>(0.00-2.63)</td>
<td>(0.00-0.26)</td>
<td>(0.00-0.07)</td>
</tr>
<tr>
<td></td>
<td>12/26</td>
<td>25/26</td>
<td>16/26</td>
<td>5/26</td>
</tr>
</tbody>
</table>

Table 4 shows that Zimbabwe has one of the highest DDT/DDE ratios compared to all the other countries. More than two times higher mean sum DDT levels and 2.6 times higher mean DDT/DDE ratio were found in samples from Group II. However, the differences were not statistically significant. Some traces of polychlorinated biphenyls (PCBs) were found in 15 out of the 40 samples. The isomer identified in all 15 samples was 2,2,4,5, 5′, penta-chlorobiphenyl (PCB 101).

The relatively high levels of sum DDT and high DDT/DDE ratio together with the presence of the metabolites p,p'-DDT found in the study analysed (Hodges and Lehamann, 1970) reflect a continuing use of DDT as an insecticide in agriculture and malaria-control programme in Zimbabwe.

The results of this pilot study suggest that there is a possibility of sustained exposure to DDT in the Greater Harare area, particularly in the lower income group. Similar results have been found in Kenya (Kanja et al., 1986). This has serious implications, warranting a country-wide investigation of the real situation. This would help shed light onto whether enough is known about pesticide hazard by child-bearing women where pesticides are in general use.

The very low sum DDT levels in the Norwegian study are due to the fact that use of DDT is banned in Norway (Jensen, 1987). DDT is still used in India and China, hence the high levels that have been reported (Slorach and Vaz, 1983; Warmex et al., 1983; Skaare et al., 1988 and Clench-Ass et al., 1988). The results also show that the γ-isomers were found in 58 per cent of the milk samples. The different isomers have quite different biological properties, the B-isomer being the most persistent with the highest accumulation potential (Heuchten, 1980; Szokalay et al., 1977). The x- and γ-isomers may also isomerise into the B-isomer in living organisms (Chikuni et al., 1991). The ratio between the different HCH isomer residues, therefore, may change from the start of food...
Table 4: Residues of organochlorine pesticides in human milk A comparison of mean sum DDT residues (ppm, mg per kg fat weight) and DDT/DDE ratio in human milk from Zimbabwe and some other countries.

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of mothers studied</th>
<th>Fat (%)</th>
<th>Sum DDT</th>
<th>DDT/DDE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zimbabwe, 1989</td>
<td>40</td>
<td>3.1</td>
<td>5.91</td>
<td>0.8</td>
<td>5</td>
</tr>
<tr>
<td>Kenya, 1983-85</td>
<td>302</td>
<td>3.2-5.1</td>
<td>1.69-18.73</td>
<td>0.7-5.7</td>
<td>10</td>
</tr>
<tr>
<td>China, 1982</td>
<td>100</td>
<td>4.4</td>
<td>6.71</td>
<td>0.4</td>
<td>9</td>
</tr>
<tr>
<td>India, 1983</td>
<td>50</td>
<td>4.8</td>
<td>6.55</td>
<td>0.3</td>
<td>9</td>
</tr>
<tr>
<td>Immigrants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To Norway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Pakistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981-82</td>
<td>7</td>
<td>3.00</td>
<td>5.98</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rwanda, 1983</td>
<td>75</td>
<td>3.3</td>
<td>4.16</td>
<td>0.7</td>
<td>17</td>
</tr>
<tr>
<td>Nigeria, 1987</td>
<td>44</td>
<td>2.8</td>
<td>3.83</td>
<td>0.6</td>
<td>8</td>
</tr>
<tr>
<td>Norway, 1981-82</td>
<td>36</td>
<td>2.6</td>
<td>0.91</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>Norway, 1986</td>
<td>28</td>
<td>3.7</td>
<td>0.58</td>
<td>-</td>
<td>7</td>
</tr>
</tbody>
</table>

Chains until excretion in human milk fat, resulting in the more persistent isomer being the predominant in human milk as shown in the results (Szokalay et al., 1977; FAO/WHO, 1978).

The extent of aldrin and dieldrin use in Zimbabwe is probably much less than the use of DDT, since only low levels of dieldrin were found in a smaller number of samples analysed. Low levels of heptachlor epoxide were found in only five samples in the present study as compared to what has been reported from other countries (Jensen, 1987). Heptachlor, heptachlor epoxide and chlordane are closely related chlorinated insecticides. Heptachlor epoxide and oxychlorodane are very persistent epoxy metabolites of heptachlor and chlordane. Traces of polychlorinated biphenyls, which are major contaminants in industrialised countries were found in some breast-milk samples.

The implications of all this to clinical paediatric toxicology is somewhat difficult to interpret. If the acceptable daily intake (ADI) for adults estimated by the FAO/WHO to be 5 kg per day for sum DDT (Atuma and Okor, 1987) is applied, the average infant body weight set at 5 kg, the mean intake of milk set
at 800 g per day, and the milk assumed to contain 3 per cent w/w fat, a "tolerable" concentration of sum DDT in human milk would be 1 mg per kg.

The study by Chikuni et al. (1991) indicated that the intake of sum DDT is exceeded by several folds by most children. However, there is no evidence so far that this has a deleterious effect on the health of the infant. Consequently, because of the well-established advantages of breast feeding, this practice should still be encouraged. However, a country-wide and more extensive study of pesticide residues still needs to be carried out.

List of abbreviations and meanings of compounds mentioned in the text

- p,p'-DDT = L,1,1-trichoro-2,2-bis (p-chloro-phenyl) ethane or Dichloro-diphenyl trichloroethane.
- DDD = Dichloro-diphenyl dichloroethane
- p,p'-DDE = 1,1 Dichloro-2,2-bis diphenyl ethylene
- p,p'-TDE = Trichloro-diphenyl ethylene
- HCH = x-, B-, y-hexachlorocyclohexane
- B-HCH = Beta benzene hexachloride or gamma-HCH: or 1x, 2x, 3B, 4x, 5x, 6B - hexachlorocyclohexane
- PCBs = Polychlorinated biphenyls
- PCB 101 = 2,2,4,5,5'-pentachlorobiphenyl.
- PCB 118 = 2,3',4,4',5-pentachlorobiphenyl

Acknowledgements
Thanks to S. Haugen and E. Stai for their technical assistance. Thanks too, to the Health Council of the City of Harare for the permission to collect mothers' milk samples in their clinics. Thanks to Dr. J.U. Skaare, Prof. N. Nyazema and Dr. A. Polder and to the Central African Journal of Medicine for permission to publish some of the information in this chapter.

References

