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Abstract

Climate change impact studies on agriculture can be broadly divided into those that empl oy
agro-economic approaches and those that empl oy the Ricardian approach. Thisstudy usesthe
Ricardian approach to examinetheimpact of climate changeon Indian agriculture. Using panel
dataover atwenty year period and on 271 districts, we estimate theimpact of climate changeon
farmlevel net revenue. The paper contributesto current knowledge on agricultural impactsby
accounting for spatia featuresthat may influencetheclimate sengitivity of agriculture. Thekey
findingsreveal that thereisasignificant positive spatial autocorrel ation—both in the dependent
variable, farmleve net revenue, and intheerror term—and that accounting for thiscanimprove
theaccuracy of climateimpact studies. Climate changeresultsin a9% declinein agricultural
revenuesinthebasemode but incorporating spatid effectslowersthiseffect to 3%. Theavailable
evidence suggeststhat better dissemination of knowledge among farmersthrough both market
forcesandlocal |eadershipwill hel p popul arize effective adaptati on strategiesto addressclimate
changeimpacts.

Key Words: Climatechange; Indian agriculture; Environmenta va uation; Spatia panedl data
andydss, Adaptation

JEL Codes. Q54, Q1, R1
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Climate Sensitivity of Indian Agriculture
Do Spatial EffectsM atter?

K.S. Kavi Kumar

1. Introduction

Over the past two decadesthe debate on global climate change hasmoved from scientific circles
to policy circleswith nation-states more serious now than beforein exploring arange of response
strategiesto deal with thiscomplex phenomenon that isthreatening to have significant and far
reaching impactson human society. Thelntergovernmental Panel on Climate Change (IPCC) in
itsfourth assessment report observed that, ‘ thewarming of the climate systemisnow unequivoca,

asisnow evident from observations of increasesin global average air and ocean temperatures,

widespread melting of snow andice, andrising global sealevels (Solomonet al., 2007). Policy
responsesto climate changeinclude mitigation of greenhouse gases (GHGs) that contributeto
the expected changesin the earth’ sclimate and adaptation to the potentia impacts caused by the
changing climate. Whilethefirstisseenlargely asareactiveresponseto climate change, the
second oneisaproactiveresponse. Though GHG mitigation policieshave dominated overall

climate policy so far, adaptation strategies are now coming to theforein order to formulatea
more comprehensive policy responseto climate change.

Oneof thecrucid inputsneeded for policy formulation on mitigation and adaptationisinformation
on the potential impacts of climate change on various climate sensitive sectors. Impactson
agriculturedueto climate change havereceived consderabl eattentionin Indiaasthey areclosdy
linked to thefood security and poverty status of avast mgjority of the population. Thestudies
have used two bas ¢ methodsto estimate the economicimpact of climate change on agriculture®:
1) an agronomic-economic approach that focuses on the structural modeling of crop and farmer
responses, combining the agronomic response of plantswith theeconomic/management decisons
of farmers. Somerefer to thisapproach asthe Crop Modeling Approach and the Production
Function Approach. Among the studiesthat havefollowed thisapproach are Rosenzweig and
Parry (1994), Adamset al. (1999), Kumar and Parikh (2001a), and Fischer et al. (2002); ii) a
spatia ana ogueapproach that exploitsobserved differencesin agricultura productionand climate
among different regionsto estimate a climate responsefunction. Somecall thisapproachthe
Ricardian approach, whichissimilar in spirit to the hedonic pricing technique of environmental
valuation. Among the studiesthat have used the spatial anal ogue approach are Mendel sohn et
al. (1994), Kumar and Parikh (2001b), Niggol Seo et al. (2005), and Sanghi and Mendel sohn
(2008).

1 Afew studies have used a third approach based on the agro-ecological zones (AEZ) methodol ogy of the
Food and Agricultural Organization. This approach assesses crop suitability to agro-ecological zones
under present and changed climatic conditions in order to estimate the change in production potential
and consequently their economics implications (see Kumar, 1998, and Darwin et al., 1995, for details).
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The Ricardian approach hasreceived widespread attention dueto its elegance and the strong
assumptionsit makes although afew scholars have questioned both the assumptionsand the
approach (Cline, 1996; Darwin, 1999; Quiggin and Horowitz, 1999). Severa studiesinIndia
havefollowed thisapproach in the past to assessthe climate sensitivity of Indian agriculture
(Kumar and Parikh, 2001b; Mendelsohn et al ., 2001; Kumar, 2003; and Sanghi and Mendel sohn,
2008). Thispaper contributesto existing knowledge onthisfieldin Indiaby addressing the
importanceof accounting for spatid featuresintheassessment of dimatesengtivity. Inconventiona

Ricardian studies the units of analysis (say, districts) are implicitly assumed to be perfectly
subgtitutableacrossspace. However, inredity, theval uesof variablesin digtrictsare defined not
only by local conditionsbut a so by the conditionsinthe neighbouring districts. Thisiswhat we
refer tointhisstudy aspatia autocorrelation of the dependent variable. Alternatively, thespatia

distribution of agricultural land within and acrossdistricts could affect the error term structure.

Ignoring thespatia correlation of error termscan lead to an under-estimation of thetruevariance-
covariance matrix and henceto an over-estimation of thet-datistic. Werefer toit inthisstudy as
the spatial autocorrelation of error terms. The study specifically assessestheevidencefor spatial

autocorrelation of variables (and errors) and attemptsto correct for the same. The paper uses
spatid pand dataanaysisin order to estimatethe climate responsefunction under various spetial

econometric specificationsand usesthe estimated climate coefficientsto predict theimpactsdue
to climate changeon Indian agriculture.

We adopt thefollowing empirical strategy for the study: we useregression analysesand farm-
level net revenueto understand theimpact of climate change on agriculture. We construct and
useapand dataconssting of cross-sectional andtime-seriesdatafor theanadysis. Inthedataset,
the dependent variable (net revenue) variesfrom year to year, asdo anumber of control variables.
However, the climate variabl es (al ong with variables depicting soil characteristics) vary only
acrossthecross-section. Notably, climateisnot expected to changeannualy athough theweather
may. Sincetheincluson of dummiesfor cross-sectiona unitswill knock out theclimatevariables,
weincludeonly dummiesfor timepointsinthe pooled regression analys's. Becauseit isimportant
to control for spatial correlation, we apply aspatial econometric analysiswith both spatial-lag
and spatial-error modd specification to estimatethe climateresponse of Indian agriculture. Both
theregular and spatia panel dataanaysesfollow identical model specifications.

Therest of the paper adoptsthefollowing structure: the next section providesabrief review of
theliterature on the Ricardian approach and climate changeimpact studieson Indian agriculture.
Thethird section explainsthe model structureand dataused. Thefourth section presentsresults
and discussesthedigtributional issuesof climate changeimpactson Indian agriculture. Thelast
section discussesthe policy implications of thefindingsof thisresearch.

2. ClimateChangeand Agriculture

Climate change projectionsfor Indiafor the 2050s suggest an increase in temperature by 2-4°C
for theregion south of 25°N and by morethan 4°C for the northern region. Whilethereislikely
to belittle changein theaverage amount of monsoon rainfal, climatol ogistsexpect the number of
rainfall daysto decrease over amajor part of the country. The expected changesin climate,
especidly rainfal, areal so marked by significant regiond variation, with thewestern and central
partswitnessing agreater decreasein rainfall days compared to the other partsof the country.
Climatologistshave also projected an increasein theintensity and frequency of extreme events
such asdroughts, floodsand cyclones (NATCOM, 2004).
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Mall et al. (2006) provide an excellent review of the climate changeimpact studieson Indian
agriculturemainly fromaphysica impactspoint of view. Theavailableevidenceshowsasgnificant
drop in the yields of important cereal crops like rice and wheat under the changed climate
conditions. However, the studies on the biophysical impacts on some important cropslike
sugarcane, cotton and sunflower are not adequate.

Asmentioned above, scholars assessthe economicimpactsof climate change either through the
agronomic-economic approach or through the Ricardian approach. Thefirst gpproach introduces
the physical impacts(in theform of yield changesand/or areachanges estimated through crop
smulation models) into an economic model exogenoudy asHicksneutral technical changes. In
the Indian context, Kumar and Parikh (2001a) have estimated themacro level impactsof climate
change using such an approach. They estimateyield changesof riceand whesat cropsusing one
of thewidely used crop s mulation models (Erosion, Productivity and Impact Ca culator —EPIC,
Stockleet al., 1992) at various sitesacrossIndia. Aggregating the site-specific estimates, the
study introducestheyield changesas supply shocksinto an applied genera equilibrium mode of
the Indian economy (the Agriculture, Growth and Redistribution of IncomeModel —AGRIM,
Narayanaet al., 1991) to assess the economy-wide impacts and welfareimplications. They
show that under doubled carbon dioxide concentration level sinthelatter half of the 21% century
the gross domestic product would decline by 1.4 to 3 percentage pointsunder various climate
change scenarios, with adverse poverty effects. Whilethisapproach can account for the so-
called carbon fertilization effects?, one of the magjor limitationsisitstreatment of adaptation.
Sincethephysica impactsof agricultureareto bere-estimated under each adaptation strategy,
theresearchers can analyzeonly alimited number of strategies. It must be noted however that
this approach can easily incorporate other adaptation strategiesthat aretriggered by market
sgnds

In an alternative approach, known asthe Ricardian approach, Mendel sohn et al. (1994) have
attempted tolink land valuesto climate through reduced-form econometric modelsusing cross-
sectional evidence. Thisapproachissimilar to the Hedonic pricing approach of environmental
vauation. Theapproachisbased ontheargument that, * by examining two agricultura areasthat
aresimilar in al respects except that one hasaclimate on average (say) 3°C warmer than the
other, onewould beableto infer thewillingnessto pay in agricultureto avoid a3°C temperature
rise’ (Kolstad, 2000). Sincethisapproach isbased on the observed evidence of farmer behavior,
it couldin principleinclude all adaptation possibilities. Infact, thisapproach treatsfarmersas
though they have* perfect foresight’ and hence better placed toimplement all adaptation options®.
Theliterature on the agronomic-economic and Ricardian approachesreferstofarmersas‘ typical’
and clairvoyant’, respectively, based on the manner inwhich they addressthe adaptation i ssues.
However, if the predicted climate changeis much larger than the observed climatic differences
acrossthe cross-sectional units, the Ricardian approach cannot (evenin principle) fully account
for the adaptation. Whilethe Ricardian approach hasthe potential to addressthe adaptation
satisfactorily, it doesnot compl etely addresstheissues concerning the cost of adaptation. One

2 Higher carbon dioxide concentrations in the atmosphere under the climate change conditions could
act like aerial fertilizers and boost crop growth. This phenomenon is called the carbon fertilization
effect.

3 Note that the non-implementation of the adaptation options is detrimental to the farmers, and hence
rational farmers would implement the adaptation options.
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of themain concernsof thisapproachisthat it may confound climate with other unobserved
factors. Recently, Deschenesand Greenstone (2007) and Schlenker and Roberts (2008) among
othershave addressed thisissue. Further, the constant relative prices assumption used inthis
approach could biasthe estimates (see Cline, 1996, Darwin, 1999, and Quiggin and Horowitz,
1999, for acritique of thisapproach).

Inthe caseof India, Kumar and Parikh (2001b) have used avariant of thisapproach and showed
that a2°C temperature rise and aseven percent increasein rainfall would lead to ailmost a8.4
percent lossinfarmlevel net revenue (1990 net revenue expressedin 1980sprices). Theregiona

differencesare significantly largewith northern and central Indian districtsa ong with the coastal

districtsbearing ardatively largeimpact. Mendelsohn et al. (2001) have compared theclimate
sengitivity of US, Brazilian and Indian agriculture using estimatesbased on the Ricardian gpproach
and have argued that using the US estimates for assessing climate changeimpactson Indian
agriculturewoul d lead to an under-estimation of impacts. Morerecently, Sanghi and Mendel sohn
(2008) have compared the climate changeimpacts on I ndian and Brazilian agriculture based on
estimatesprovided by the Ricardian approach. Thisstudy followssimilar methodology and data
asKumar and Parikh (2001b) and Mendelsohn et al. (2001) and reportsannual lossesvarying
between 4% and 26% for Indiaunder various climate change scenarios (thel osses are expressed
asapercentage of farm-level net revenue). The climate change scenariosconsidered cover a
temperature increase of 1 to 3.5°C and a precipitation change of -8% to +14%. Under the
middle scenario of a2°C increaseintemperature and a 7% increasein precipitation, Sanghi and
Mendel sohn (2008) report an annual loss of 12 percent of farm-level net revenueinIndia. In
comparison, our study, which usesmore accurate base climate data, estimatestheannual lossas
9 percent for asimilar climate change scenario.

In addition to theseimpact studies, anumber of studiesin thelndian context havelooked at the
vulnerability of Indian agricultureto climaterisks. O’ Brien et al. (2004) attempted toidentify the
so-called ‘ doubleexposed’ districtsinIndia—i.e., thedistrictsthat are vulnerableto climate
change aswell as globalization — with afocus on the agricultural systems. Kumar (2007)
providesan overview of thesestudiesin an attempt to put together the avail able evidence on: (a)
the extent of theadverseimpactsof climate changeon Indian agriculture; (b) the characteristics
of relatively morevulnerableregions, and (c) effective adaptation strategiesthat heptoamdiorate
the present and future vulnerability of agriculture. Morerecently, theWorld Bank (2008) analyzed
the climate change impactsin the drought- and flood- affected areas of India. Arguing that
present day devel opment strategies must incorporate el ements of climate risk management, the
authors identify a number of adaptation strategies that seamlessly merge with the overall
devel opment agenda.

Theuseof cross-sectiona unitsfor ng climate changeimpactsinthe Ricardian approach
impliesthat regional fixed-effects cannot beintroduced for improving model specification as
inclusion of such fixed-effectswill knock out the climate coefficients, thus defeating the very
purposeof theanalysis*. Hence, the Ricardian model specification assumesthat al heterogeneity

4 Asdiscussed in the next section, some recent studies (Deschenes and Greenstone, 2007) have attempted
to include regional fixed-effects in the analysis using cross-sectional data. However, as we argue later,
such analyses may estimate the impact of weather shock and not necessarily the impact of climate and
its change.
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across cross-sectiona unitsiscontrolled for by the observed explanatory variablesincluding the
climatevariables. Thusitisvery important that the model specificationisaccurate sothat climate
coefficientscaptureonly theinfluenceof climate. Further, sincethereisscopefor learning across
gpatid unitsthrough communication and information diffusion, itisimportant to account for petia
correlation inthe Ricardian analysisusing cross-sectional data. Itisthislatter issuethat the
present study focuseson. Depending on how thespatia correationwould enter intotheRicardian
analysisusing cross-sectional data, somerecent studies ng climate changeimpactson
agricultureinthe USA haveeither assumed that the dependent varigbleisspatialy lagged (Pol sky,
2004) or theerror termisspatially correlated (Schlenker et al ., 2006). Either way, these studies
have argued for the need to account for spatia correlaioninthe Ricardian analysis. Theresults
from these studi es have suggested significant deviations between the climate changeimpacts of
modelsthat account for spatial correlation and those that do not. The present study aimsto
bridge the knowledge gap in the Indian context by attempting to get accurate estimates on the
climate sengitivity of Indian agriculture through specificaly accounting for spatia correlation of
the cross-sectional unitsintheRicardiananaysis.

3. Modd Specification and Data

Aschangesin climatewould influence crop growth, the behaviour of the producersof agricultura
goodswould aso ater withachanging climate. From the producers’ point of view, changesin
climate can be considered asachangein theinput structure. Consider k purchased inputsand|
climateinputsthat aproduction function F relatesto theoutput. Let P, and Y, betheoutput price
and quantity of thei" good respectively, X, the quantity of thej" purchased input used in the
production of thei*" good, and q the price of thej™ purchased input. The profit-maximizing
behavior of the producer can be represented as,

Max PRY, _qu' Xi (1)
i
subject to aproduction function,
Y. £ F (X X Xy BB e E)) 2

Theinclusion of environmental/climateinputs (variables E in the above equation) makesthis
specification different from the conventiona one. Theoreticaly, profits, input demandsand output
supply can be expressed as functions of measured market inputs and climate variables even
though there is no market for climate inputs. However, researchers consider an associated
econometric analyssin order to obtain thefunctiona rel ationship between output and changesin
climateinputsdifficult and hencethey often partition the production function represented in equition
(2). Inthecase of agriculture, for example, researchersfirst estimateyield changesand then
introduce them into economic model sas measures of supply shifts. While scholarscommonly
use such neutral technology change assumptionsintheliterature on climate changeimpacts, itis
not necessary to make such an assumption. Thus, equation (2) becomes,

Y, £ F (X, Xip X3 )*F, (ELE, .., E)) 3
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Such partitioning would alow fairly complex technical relationshipsamong market inputsas
described by econometrically related production rel ationships and among climate inputs as
described by crop simulation models. Researchersoften integrate the crop responsesto climate
parameters, estimated using crop simulation model's, with either apartial or generd equilibrium
framework in order to assessthe economic and welfareimplications.

The Ricardian approach, on the other hand, combinesthe climate response curves of various
cropstoarriveat theoverall crop response curverecognizing that different cropshave different
climatic requirements. Though thefarmer would voluntarily switch from one crop to another, as
not switching over would result in losses, the transition between cropswould involve costs.
Thus, to take into account the costs and benefits of adaptation, therelevant dependent variable
should benet revenueor land values(that is, capitalized net revenues), and not yields®. Thus, the
Ricardian approach estimatesavariant of equation (2). Scholarsmeasurethe climate change
impacts as changesin net revenue or land value as shown in Mendel sohn et al. (1994) and
explained below.

Consider acrop with the aggregate demand Y, and let the production function beasshownin
equation (2). Associated with Q (which representsthe set of prices of the inputsused inthe
production), Eand Y, therewill beacost function (obtained through cost minimization) given by
equation (4) '

G = GKMQE) (4)

where, C isthecost of production of goodi. Separating‘land’ out of the vector of inputs X and
taking itsannual rent asp,, we canwritethe profit maximization equation as,

Max RY, -C (Y,,QE)-q L ®)

where, L istheamount of land used for producing Y,. Under perfect competitionfor land, we
canwritetherent of land as:

_ [RY -C(%.QE)
q = - ©

If ‘i isthe best usefor the land, given the environment E and factor prices Q, the observed
market rent ontheland will be equal to net profitsfrom the production of good ‘i’. Wecanwrite
land value, whichisthe present value of the stream of revenue over time, as,

Vi = [Tg e (7

The Ricardian approach examinestherel ationship between land rent (equation 6) or land value
(equation 7) and the exogenousvariables, P, Q, and E.

> However, even net revenue cannot fully account for the costs of the transition incurred by the farmer
while moving from one crop to another in response to the changes in the climatic conditions.
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Under the assumption that environmental changeswill leave market prices unchanged, we can
writethewefarevalue of achangeintheenvironment as,

W(EA_EB) = [PYB_ZCi(Yi’Q’EB)] - [PYA_ZCi(Yi’Q’EA)](S)

plugging equation (6) in equation (8), we can show that,

W(E, - Eg) = Z(qua Les = Oia Lea) 9)

whereq|, and g, areland pricesunder different environmental conditions. Alternétively, wegive
the present value of thiswelfare change by,

(10)

Equations(9) and (10) arethe definitions of the Ricardian estimate of the value of environmental
changes. If the output prices do not change under changed climate conditions, the changein
aggregate land values or the change in the present value of net revenues captures exactly the
vaueof thechangeintheclimate.

Theempirica strategy of the study isto estimate afunctional relationship between land vaue, or
net revenue, and climate variablesusing cross-sectiona datawhilecontrolling for variablesthat
could cause variability inthe dependent variable. We could then usethe estimated functional
relati onshl ploassessthe cI imate changeimpacts.
j W(E, - E;)e” dt f’,(\/m -V,
Scholarshaveused avariant of the Ricardian gpproach dueto the non-existence of well functioning
land marketsin the devel oping countries(see, Dinar et al., 1998). Inplaceof land values, inthe
earlier Indian studiesscholarshave used farm level net revenue asawe fareindicator whilethey
have assessed the val ue of the changein the environment/climatethrough achangeinfarmlevel
net revenue. They control for variability in the dependent variable caused by factorsother than
climatethrough: (a) soil characteritics (both soil quality and top-soil depth could differ sgnificantly
acrossthe cross-section leading to variability in thefarm-level net revenue); (b) thelevel of
technology penetration (wide divergence acrossthe cross-sectional unitsin termsof draught
force utilization, mechanization, and penetration of new growing technologies could lead to
variability inthedependent variable); (c) the extent of devel opment (opportunity cost of land and
market access and alternativelivelihood opportunities could differ acrossthe cross-sectiona
unitsand hence contributeto the variability in the dependent variable). Differencesacrosscross-
sectiona unitsin physica characteristicssuch asthe extent of the day length could also contribute
tovariability inthefarm-level net revenue.

It ispossiblethat some of these control variables are endogenousin nature and hence do not
qudify asexogenousvariables. However, we haveincluded them asexogenousvariablesinline
with the existing literature on climate changeimpacts (Kumar and Parikh, 2001b; Sanghi and
Mendel sohn, 2008) in order to facilitate comparability of results.
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Wethus specify the Ricardian model asfollows:

NR = f(T,,T>R,,R’,T,R,, SOIL,BULLOCK,TRACTOR, )
POPDEN, LITPROP,CULTIV,HYV, IRR, ALT)

where, NRrepresentsfarmlevel net revenue per hectarein constant rupeesand T and R represent
temperatureand rainfall respectively. Itisnoteworthy that based on the existing literaturewe
adopt aquadratic functiond specificationadongwithdimateinteractionterms. Thecontrol variables
include soil (captured through dummies representing several soil texture classes and top-soil
depth classes), the extent of mechanization (captured through the number of bullocksand tractors
per hectare), the percentage of literate population, popul ation density, altitude (to account for
solar radiation received), the number of cultivators (since we could not account for the cost of
labour while cal cul ating the dependent variable), the fraction of areaunder irrigation and the
fraction of areaunder high-yielding variety seeds. Wedo not includethe prices—output aswell
asinput —inthe model. Thisisbecause an earlier study by Kumar and Parikh (2001b) has
shown that the climate coefficientshave not S gnificantly changed when they includethe pricesof
magor cereal cropsinthemode specification. However, no evidenceexistsfrom previousstudies
about theinfluence of input prices. Wethereforeassumetheir cross-sectiona variationto benot
sgnificant here.

We use pool ed cross-sectiona and time-seriesdatato estimatethe abovemodel. Districtsare
thelowest adminigrativeunit a whichreligbleagriculturd dataisavalable. Weuseacomprehensve
district level dataset for the period 1966 to 1986 for the purpose of theanalysis. Weassemble
agricultural dataat district level inthe dataset al ong with the relevant demographic and macro
economic data. Thedataset coversdistrictsdefined according to the 1961 censusacrossthirteen
major states of India(AndhraPradesh, Haryana, Madhya Pradesh, Maharashtra, Karnataka,
Punjab, Tamil Nadu, Uttar Pradesh, Bihar, Gujarat, Rajasthan, Orissaand West Bengal). The
dataset includes271 digtrictsinall.

Thevariables covered in the dataset include the gross and net cropped area; the grossand net
irrigated area; the cultivators, the agricultural labourers; the cropped areaunder high-yielding
variety seeds; the total cropped area under five major crops (rice, wheat, maize, bajra and
jowar) and fifteen minor crops (barley, gram, ragi, tur, potato, ground nut, tobacco, sesamum,
ramseed, sugarcane, cotton, other pulses, jute, soybean, and sunflower); bullocks; tractors;
literacy rate; population dengty; fertilizer consumption (N, P, K) and prices, agricultura wages;
crop produce; farm harvest prices; soil textureand top soil depth. For purposesof analysis, we
definefarmlevel net revenue per hectareasfollows:

Net Revenue per ha = ((Gross Revenue) — (Fertilizer and Labor Costs)) )

Total Area

where, we cal cul ate grossrevenue over the twenty crops mentioned above and wherethetotal
areaisthe cropped areaunder the twenty crops, thefertilizer costs arethetotal yearly costs
incurred towardstheuse of fertilizer for al the cropsand thelabour costsarethe yearly expenses
towardshiring agricultural labour. Itisnoteworthy that we do not include costsattributableto
cultivators, irrigation, bullocks and tractorsin the net revenue cal cul ations because appropriate

8 SANDEE Working Paper No. 45-09



pricesaredifficult toidentify. However, we usethese variablesas control variablesinthe model
asspecifiedinequation (11).

Unfortunately, thereisno‘ clean’ climate dataavailablefor theanaysis. Meteorologicd stations
typically collect meteorological dataand any district may have oneor many stationswithinits
boundary. Sinceal other dataisattributableto ahypothetical centreof thedigtrict, itisnecessary
towork out the climate datatoo at the centre of thedistrict. For thispurpose, itiscustomary to
interpol ate meteorological station datato arrive at adistrict specific climate (see Kumar and
Parikh, 2001b, and Dinar et al., 1998, for more detailson the surfaceinterpolation employed to
generatedidrict level climatedata). Weuseclimate datacorresponding to about 391 meteorologica
stations spread across Indiafor the purpose of devel oping thedistrict level climate. Thedataon
climate—at the meteorol ogical stationsand hence at the districts— correspond to the average
observed weather over the period 1951-1980 asdocumented in arecent publication of theIndia
Meteorologica Department. Werepresent al the climate variablesthrough four months, January,
April, July and October, corresponding to thefour seasons. Theclimatevariablesincludeaverage
daily temperatureand monthly total rainfall in thefour months mentioned above. Theaverage
temperatureand rainfal for each of thesefour monthsover the period 1951-1980 for each of the
271 digtrictsrepresent the climate variablesused in thisstudy. Thus, these data pointsdo not
vary over timebut instead vary acrossdistricts.

We measure the dependent variable (namely, net revenue) in equation (11) and some of the
explanatory variables (such aspopul ation density, tractors, bullocks, etc.) for every singleyear
of theentiretimeperiod. If annual weather datafor each district wereavailablefor acontinuous
period of time, then we could have used therolling averages of 30 year weather dataas’ climate’
for eachyear. That is, for the year 1966, the average weather over the period 1937 to 1966
would serveasclimate, whereasfor theyear 1970, the average weather over the period 1941 to
1970 would serve asclimate. Thiswould ensurethat the farmer in each year respondsto the
climatethat she experiences. However, reliable annua weather datafor along period of timeis
not availablein India. Hence, climate datain the analysis correspondsto the average weather
over theperiod 1951 to 1980. However, wework under the assumption that the climate hasnot
changed significantly over the study period and that the average weather over the 30 year period
ishighly correlated®.

Given the scope for the presence of unobserved variablesthat could confound with climate
variables, itispossibleto employ thedistrict fixed effects specification for efficient estimation.
Such aspecification would knock out the climate coefficientswhich areinvariant over time.
Deschenesand Greenstone (2007) in arecent study on US agriculture have used county fixed-
effects specification and have assessed the val ue of weather shocksto thefarmer asagainst the
climate changeimpacts. Thepresent study with itsfocuson climate changeimpactsattemptsto
addressthisissue by including state fixed-effects. Theyear effectsare captured through year
fixed effectsafter the Hausman test rg ected the null hypothesis, implying that the random effects
model produces biased estimates. Further, since the units of analysis (i.e., districts) differ

6 Sanghi and Mendelsohn (2008) in their analysis of the climate change impacts on Indian agriculture
use climate data corresponding to the period 1930-1960 and report almost similar results as in this
study. Thisis seen as judtification for the above claim that the climate has remained stable over the
study period.
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significantly insizeand agricultura activities, the measurement errorsmight also substantially
differ acrossdigtricts. Hence, weweigh the datafor each unit of analysisby thetotal areaunder
thetwenty cropsin order to adjust for heteroscedadticity.

3.1 Climate Sensitivity and Spatial Autocorrelation

Wecanintroduce spatia featuresinto the Ricardian gpproach based on two arguments. (i) theory-
drivenand (ii) data-driven. Inthetheory-drivenarguments, thefocusisoninteracting agentsand
socid interactions (Ansdlin, 2002). Thismeansthat agents across space communicatewith each
other in order to learn about farm management practices and response strategiesin order to
handle climate and other risks. The assumption isthat such interaction resultsin aspatially
correlated dependent variable (and, sometimes, independent variables also). The resultant
econometric specification then involvesincluding aspatialy lagged dependent variableasan
additiona independent variable.

In the data-driven specification, thefocusison accounting for theinefficiency being created by
the possible presence of spatial correlation inthe error termsof the linear regression models.
Two immediate examples of thesetwo types of specification can be seenintheclimate change
context. While Polsky (2004) introduces spatial econometric specification of the Ricardian
model mainly to account for socia interactions, Schlenker et al. (2006) bringin spatial features
to arrive at efficient estimates of regression coefficients. In most Ricardian studiesof climate
changeimpacts (including those carried out inthe Indian context), thet-gtatistic valuesare very
high reflecting apossible spatial correlation of theerror terms. Infact, Schlenker et al. (2006)
arguethat thet-valuesin model sthat do not account for spatial heteroskedasticity of error terms
arelikely to be9timeslarger than thosein model sthat account for spatial correlation of theerror
terms. Either way, the estimation procedureinvolves specifying the spatia weight matrix, which
providesastructureto the assumed spatial relationships.

Thus, the presence of spatid autocorrelation necessitates re-specification of themodel aseither
Spatial-lag or spatial-error model as shown below:
Spatia-error moddl: y =X + n, wheren = pWn +¢ (13a)
Spatia-lagmodel: y=pWy+ XB +¢€ (13b)

where, y is (nx1) the vector of dependent variable observations, X is (nxm) the matrix of
observations on independent variablesincluding the climate and other control variables, 3is
(mx1) theregression coefficient vector, n is(nx1) thevector of spatialy correlated error terms, p
is(1x1) thespatia autoregressive parameter, Wis(nxn) the spatid weightsmatrix, and eis(nx1)
thevector of random error terms. Notethat y and X arerespectively theleft hand and right hand
sdevariables specified in equation (11) above.

Oneof thecrucid inputsthat spatial anaysisneedsistheweight matrix W. We usethreeweight
matri ces—rook-based contiguity, queen-based contiguity, and distance-based contiguity —inthe
present analysis. We generate these weight matricesfor thelndian districtsin GeoDasoftware’.
We carry out aspatia econometric analysisin GeoDaand STATA softwarefor single cross-

7 Wk use the spatial econometric software developed by Prof. Luc Anselin of the University of Illinois
(version 0.9.5).
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sections. However, sinceitisnot feasibleto estimate the spatial fixed-effectsmodel in GeoDa
(andds0in STATA for computationad limitations), wetransfer theweight matricesviaR-software
to ASCII dataformat. We estimate the spatial panel models— spatial-lag and spatial-error —
using MATLAB software® asit provides scopefor reading sparse matrices.

3.2 ClimateChangeProjectionsfor India

For theanaysis, we usethe climate change projectionsfor Indiareported in Cline (2007). The
climatechangeprojectionsaretheaverageof predictionsof Sx generd circulation mode sincluding
HadCM3, CSIRO-Mk2, CGCM2, GFDL-R30, CCSR/NIES, and ECHAM4/OPY C3. Table
1 showsthe region-wise and season-wise temperature and rainfal | changesfor the period 2070
2099 with referenceto the base period 1960-1990. From theseregional projections, we assess
the state-wise climate change predi ctionsby comparing thel atitude-longitude rangesof theregions
withthoseof thestates. |naddition to thisIndia-specific climate change scenario, we a so assess
theimpactsfor twoillustrative uniform climate change scenarios (a+2°C temperature change
along with a+7 percent precipitation change; and a+3.5°C temperature changea ong with a
+14 percent precipitation change) that embrace the aggregate changes outlined in thefourth
assessment report of IPCC (Solomon, 2007).

4. Results and Discussions

Theresultsarereported inthree sub-sections: in thefirst sub-section, we present the estimates of
the classic Ricardian approach, which isfollowed by adiscussion on spatial diagnosticswith
different weight matrices; the last sub-section reportsthe estimates of the panel dataanalysis
under spatial-lag and spatial -error specifications and presentsthe estimates of climate change
impactson Indian agriculture.

4.1 Climate Response Function —Averaged Regression

For purposes of comparison and carrying out spatial diagnostic tests, we average the data
over theentire period of analysisto createasingle cross-sectional dataset. We usethissingle
cross-sectional dataset for estimating equation (11) using theweighted | east squares approach,
with areaunder cropland in each district serving astheweight. Table 2 reportsthe estimated
regression coefficients. We usethereported coefficientsasthe basisfor interpreting therest of
theanayses.

The estimated climate response function for the average data over the period 1966-1986
has several expected featureswith about 66 percent goodness of fit. A large number of climate
variables are significant. Since soils tend to differ across districts, we include the soil
variablesmainly to control for theinfluence of cross-sectional variability of soil quality onthe
dependent variable. Theother control variablesinclude cultivators per hectare, bullocks per
hectareand tractorsper hectare. Both cultivatorsand bull ockshave amixed expected influence
onthefarm-level net revenue. Onthe one hand, the higher values of these variablesreducethe

8 J. Paul Elhorst (www.spatial-econometrics.com) has written the MATLAB codes for spatial panel
analysis.
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cost to the farmer, but on the other hand high values al so represent alow technol ogical base.
Tractorsper hectare clearly haveahigh significant positiveinfluenceon farm-level net revenue.
Literacy and population density have a positive effect as expected. The percentage of land
under irrigation clearly increasesfarm-level net revenue. Some studieshave argued against the
useof irrigation asone of the explanatory variablesdueto the potential endogeneity problem and
have suggested instead the use of areaunder high-yielding variety cultivation. However, since
most of theirrigated land dso cultivates high-yielding variety crops, thesetwo variablescould be
largely collinear.

Theclimate variablesarelargely significant and the estimated response function appearsto be
non-linear, inlinewith availableevidenceintheliterature. Thetemperatureeffectsarefar higher
than the precipitation effects. Thetemperature coefficientsareal negativein January (Winter),
April (Spring), and July (Summer) but positivein October (Autumn). Whilehigher temperatures
during the hot spring and summer dayswould adversely influence crop growth, warmer autumns
could lead to an enhanced growing season. Higher temperature during winter could favourably
influence pest growth and hence could have an adverseimpact on crop growth. Higher precipitation
asexpectedisbeneficid inthewinter and autumn seasons, but harmful during spring and summer.

Thetemperatureresponsefunctionsexhibit mixed curvature properties, with thewinter and autumn
temperatures showing aconcave nature, and the spring temperature showing aconvex nature.
The preci pitation responsefunctionson the other hand are convex for the spring and summer, but
concavefor thewinter precipitation. The autumn precipitationisamost linear withasmall square
coefficient.

For purposes of comparisonwith the spatial models, we carry out apooled regression analysis
covering all the years of the study period with exactly similar specification as the averaged
regression discussed here. Inadditionto all the variables discussed above, weincludetheyear
fixed effectsinthepand dataandysis. All the coefficientsretained thesign and magnitudein the
pooled regression and haveimproved statistical significance. Almost al the climate coefficients
were statistically significant in the pooled regression. Wereport theseresultsin Table 4 along
with spatial panel dataanaysesresults.

Asdiscussed above, avalid criticism of the Ricardian approach isunobserved cross-sectional
variablesconfounding with climatevariables. Andincluding district fixed effectsinthe pooled
dataanalysisisnot feasible given the non-varying nature of some of theindependent variables,
including theclimatevariables, over theyears. Inan atempt toimprovethemode specification,
we added regional fixed effectsto theequation (11) intheform of statedummies. Wereport the
estimated coefficientsin TableA1inthe appendix. Almost 70 percent of the climatevariables
remained sgnificant inthemodel with state dummies, confirming that regiond fixed effectshave
not nullified theinfluence of climate onfarm-level net revenue. Barring afew exceptions, the
direction of influenced so remained smilar between mode swithout and with regiond fixed effects.
Themagnitude of individual coefficientshowever has changed aswasto be expected. But, we
did not includetheregiona dummiesfor therest of theanaysis.

4.2 Diagnosticsfor Spatial Dependence

Weanayzethespatial clustering of the dependent variable(i.e., net revenue per hectare) and the
residua of theordinary |east squaresregression by constructing Moran scatter plotsfor severa
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timepointsinthe period 1966-1986. Figure 1 showsthe scatter plotsaong withtheMoran’sl
valuefor theyears 1970, 1975, 1980 and 1985. Thetop panel showsthe Moran scatter plot for
the dependent variablewhilethe bottom pandl showsthat for theerror. The scatter plotisgraph
of Wy versusy, where Wisarow-standardized spatial weight matrix andy = [(variablevalue—
mean of variable)/standard deviation of variable]. We usearook-contiguity based weight matrix
for constructing the Moran scatter plots. Theclustering of va uesin the upper right quadrant and
lower left quadrant representsasignificant positive spatial autocorrelation. AsseeninFigurel,
for dl thefour periodsfor whichwereport scatter plots, the dependent variable and theerror te
Theindication of Sgnificant spatia clustering given by thespatid autocorrel ation statistic represents
only thefirst step inthe analysis of spatial data. We carry out spatial diagnostic tests on the
averaged regression reported in the previous section to statistically assessthe extent of spatial
dependence in the data and to identify the appropriate correction for removing the spatial
dependenceinthedata. Table 3 reportsvarioustest statistics under different weight matrix
specifications. Theweight matricescons dered include rook-contiguity based, queen-contiguity
based, and distance-based weight matrices.

Thefirgt row in Table3 showstheMoran | gatistic of theerror dong with the associated probability.
It showsthe statistic to be highly significant indicating the problem of spatial dependenceinthe
data. Thevaueof Moran| gatisticiscloseto 0.2 acrossthedifferent weight matrix specifications
indicating that aternativeweight matricesmay not haveasignificant influenceontheandyss.

Weusethe Lagrange Multiplier test to determine which spatial model should be used for spatial
correction (spatial-lag or spatid-error). Thesequenceof thesearchisasfollows: if both Lagrange
Multiplier (lag and error) statisticsare significant, then we consider therobust versionsof these
teststo be significant and we choosethe mode specification with the higher significancefor the
gpatid analysis. Inall casesreportedin Table 3, the LagrangeMultiplier (lag and error) statistics
arehighly significant, necessitating the need for examining the robust Lagrange Multiplier test
gatistic. Inrook-contiguity and queen-contiguity based weight matrix specifications, therobust
LagrangeMultiplier satigticsfor bothlag and error aresignificant, with thelatter highly significant
comparedtotheformer. Inthe case of distance-based weight matrix specification, however, the
robust Lagrange Multiplier testssuggest the spatia-error mode asthe preferred model for spatia
correction.

Based on theseresults, we attempt spatial correction using both spatial-lag and spatial-error
model specifications. Wediscussthese resultsin the next section.

4.3 Effect of Spatial Autocorrelation on Climate Sensitivity

The evidence presented above based on averaged regression makesit clear that: (a) the choice
of theweight matrix may not have asignificant influence ontheanalysis, and (b) the choice
between themodel for spatial correction—namely, spatial-lag and spatia-error —isnot obvious,
withtherobust Lagrange Multiplier test statistic remaining significant under lag aswell aserror
specifications. Hence, we use both these model sfor spatia correction and re-estimate equation
(112) with the modifications specified in equations (13a) and (13b) using the pandl dataover the
period 1966 to 1986. We base all the estimates on fixed (year) effects specification in the
pooled dataand the observations are weighted by thetotal areaunder all the crops considered
intheandysis. Thus, weattempt two kindsof heteroscedadticity correctionsinthespatia andysis:

SANDEE Working Paper No. 45 - 09 13



thefirstisthroughthe crop areain each district in order to account for differencesinthe size of
thedistrictsand hencethe differencein the measurement error; and the second isthrough the
weight matrix in order to account for spatial dependenceinthedata. We usetherook-contiguity
based weight matrix to estimatethe spatial models.

Table4 showsthe climate response functions estimated with and without consi deration of spatial
autocorrelation. Though the adjusted R-squareval ueishigher under both the spatial models, it
iswhat isknown asthe pseudo R-square and hence not exactly comparablewith that in OLS.
Theclimate coefficientsin both the spatia-lag and spatid-error model sarelargely significant and
haveasmilar influence asthe basemodd without thespatia correction. Barring afew exceptions,
the climate coefficientsin the model sthat account for spatial autocorrel ation (either through
Spatial-lag or spatid-error models) are uniformly lower than that which ignoresthe presence of
gpatia autocorreation. Thisimpliesthat the explanatory power of the climate variablesthat we
attributed to their within district value in the base model was partly due to the influence of
neighbouring didricts.

With regard to the choi ce between the two spatial models, the diagnostic testswereinconclusive
asdiscussedinthe previoussection. Thecoefficient of thespatiadly lagged farm-level net revenue
inthespatia-lagmodel and the coefficient of spatialy correlated errorsin the speatia-error model
areboth positiveand highly significant. Themodel performance parameters, the higher adjusted
R-square value (0.72 vs. 0.65) and the higher log-likelihood value (-127406 vs. -127861),
indicatethat the spatial-error modd ispreferred over the spatia-lag mode.

Inorder to gainingghtinto theinfluence of variousclimate change scenarioson Indian agriculture,
we assess the impacts based on the estimated climate response functions. We consider two
climate scenarios: a) oneillustrative scenario with a+2°C uniform changeintemperatureand a
+7 percent uniform changein precipitation; b) one I ndia-specific scenario with the expected
regional changesintemperatureand precipitation asreportedin Table 1. Wemeasuretheclimate
change induced impacts through changesin the net revenue triggered by the changesin the
climatevariables. Weestimatetheimpactsfor each year at theindividua digtrict level, whichwe
then aggregateto derivethe national level impacts. We report the averageimpactsover al the
yearsin Table5. TheTablereportstheal Indialevel impactsestimatedin eachtimeperiod asa
percentage of the 1990 all Indianet revenue expressed in 1999-2000 prices. We consider the
1990 net revenue mainly to accommodate acomparison with previousresultsreported inthe
literature. Weinterpret theimpactsasachangein 1990 net revenueif future climate changes
wereto beimposed on the 1990 economy and are annual impacts. We estimatethat the overall

impacts (for the same climate change scenario) using climate coefficients obtained from themodel

that accounts for spatial autocorrelation (either through spatial-lag or through spatial-error
specification) aresignificantly lower than those obtained from themode that ignoresthe spatial

effects.

Sincetheaggregateimpactsmask significant regional differences, Figures2 and 3 comparethe
distribution of climate changeimpactsat the state and district |evel s between the model sthat
account for spatial autocorrelation and thosethat do not. For thesefigures, we usethelndia
specific climate change scenario that incorporates non-uniform changesin temperature and
precipitation acrossregions. Theresultsshow that climate changeislikely to adversdly affect
agricultureinamost all theregionsin Indiawith the exception of the eastern states of Bihar and

14 SANDEE Working Paper No. 45-09



West Benga along withtheinland region of Karnataka. Severeimpactsare borne by the high-
valueagricultural regionsof Haryana, Punjab and Uttar Pradesh, along with thedry regionsof
Gujarat and Rgjasthan. Coastal stateslike AndhraPradesh and Tamil Nadu al so lose out under
changed climatic conditions. Between themodelsthat do not incorporate spatia correction and
themodel sthat do, we predict significant changesin Andhra Pradesh, Tamil Nadu, Rgjasthan,
Madhya Pradesh and to someextent in Uttar Pradesh. Thismeansthat inthe case of these states
themodel without spatial correction overestimated the climate changeimpacts.

5. Conclusonsand Policy Recommendations

Thispaper contributesto exigting knowledge on theimpactsof climatechangeon Indian agriculture
by accounting for spatial issuesin aRicardian framework. Using approximately 20 years of
district level agricultural datacoupled with climate and soil data, the analysisemploys spatial
panel datamodelsto exploretheseissues. Besidesestimating the climate responsefunction for
Indian agriculture, the paper estimatesthe expected impacts dueto climate changeon Indian
agriculture.

The evidence presented in this paper suggeststhat, (a) accounting for spatial autocorrelationis
important dueto the presence of significant spatial clustering of the data; and (b) the climate
changeimpactsaresgnificantly lower after incorporating Soatia correction either through spatia-
lag or through spatial-error mode! specifications. The choice between spatial-lag and spatial-
error mode specificationsfor spatia correctionislargely inconclusive. However, purely froma
model performance perspective, the spatial-error model hasadight edge over the spatial-lag
modd.

Anillustrative climate change scenario that envisages a +2°C temperature changeand a+7
percent precipitation change uniformly acrossIndiawould result in an estimated 9 percent decline
infarm-level net revenueannually. Thisdeclineisestimated to be 3 percent once we account for
spatid effectsusing the patial-error model.

Theresults from this paper are lower than the range of results obtained from other climate
changeagricultural impact studiesin India. Relativeto theannua declineof 3 percent infarm-
level net revenue estimated here, Kumar and Parikh (2001b) estimate a 8.4 percent decline
while Sanghi and M endel sohn (2008) concludethat climateimpactswill resultinal2 percent
declineannuadly infarm-level net revenueinindia. Theimpactsonthe GDP estimated by Kumar
and Parikh (20014) are not strictly comparable with those reported in the above studiesdueto
the partial equilibrium approach adopted inthe Ricardian framework. However, yield losses
estimated by Kumar and Parikh (2001a) and othersreported in Mall et al. (2006) arerdatively
higher than thelossesin net revenue estimated by the Ricardian studies. 1n sum, the estimates of
climate changeimpactson Indian agriculturefromthis paper arelower thanthereported estimates
intheexigting literature.

Sinceuniform changesin climate considered intheillustrative scenario woul d mask the expected
regional variation inthe climate change, we a so estimate theimpacts due to an India-specific
climate change scenario dong with theregiona distribution of impacts. Withtheexception of the
eastern states of Bihar and West Bengal and theinland region of Karnataka, in all other regions
of Indiaclimate changeislikely to have an adverseimpact on agriculture. Whilethe high-value
agricultural regionsof Haryana, Punjab and Uttar Pradesh together with thedry regionsof Gujarat
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and Rgjasthan bear significant impacts, coastal sateslike AndhraPradesh and Tamil Nadu also
suffer to someextent in acons deration of overall impacts.

Inthe case of Andhra Pradesh, Tamil Nadu, Rajasthan, Madhya Pradesh and, to some extent,
Uttar Pradesh, incorporating the spatia effectsresultsinalowering of the climate changeimpacts
onagriculture. Thissuggeststhat inthese states, astrong flow of information amongst farmers
may contributeto better adaptation and thereby lower theimpact of climatechangeon agriculture.
Theassessment of climate changeimpactson Indian agriculturethrough acareful consideration
of gpatial issuesin the Ricardian framework that this study has carried out would be useful in
providing amoreaccurate picture of the potentid impactsof climate changeon Indian agriculture,
However, from apolicy perspective, it would be helpful to identify factorsthat contributeto the
observed spatial correlation of variablesacrossdistricts. Such knowledgewould be useful in
designing policiesthat contributeto enhancing thefacilitating factors.

Focus group interviews from the field indicate that the main sources of information to
farmersare the more affluent farmersin the neighbourhood, fertilizer and pesticide dealers,
seed providers, and the better informed family members. Contrary to the general belief
that agricultural extension centres operate asthe primary source of information, the evidence
fromthefield suggeststhat, in reality, farmersbenefit very little from these government ouitfits.
Whilemarket sources seemto havethe appropriate self-regul ated checks against the provision
of wrong information, it isimportant to ensure that incorrect information does not reach the
farmerseveninadvertently.

Thefield sudiesasoreved that policy makersshould exploreand experiment with new sources
of information diffuson. Giventhefragmented natureof Indian agriculturd lands, thelargescae
participation of the corporate sector in providing agricultural extens on serviceswould bedifficult,
thereby necessitating theexpl oration of other options. Among other options, thefarmersfavoured
in particular the participation of agricultural cooperatives, NGOs, and dealers of inputsand
fertilizersininformation diffusion. Inthiscontext, it might beworthwhileto carefully study
other country experiencesin order to identify the routesthrough which the State can provide
agricultural extension servicestothefarmersinindia. Forinstance, in Ecuador, theagricultura
extensonworkersoperatein tandem with thefarmersthrough share cropping in order to ensure
proper information diffusion. Ontheother hand, Chilefinancesthe costsof private sector firms
which transfer technol ogy know-how and information on new agricultural practicesto small-
scaefamers.

The Ricardian approach we used in thisstudy dealslargely with private adaptation measures
undertaken by farmersfor whom not adapting (that is, through changesin crop-mix and crop
management practices) would be sub-optimal. However, climate changeaso requireslarge-
sca e public adaptation al ongs dethe af ore-mentioned private adaptation practices. Futureresearch
inthisfield could focus on the nature of such adaptation aswell as assessment of cost-effective
adaptation strategiesin order to ameliorate the adverse impacts of climate changeon Indian
agriculture.
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Table1: Projected Changesin Climatein India: 2070-2099

Jan.-March April-June July-Sep. Oct.-Dec.

Temperature Change (°C)

Northeast 4.95 411 2.88 4.05
Northwest 4.53 4.25 2.96 4.16
Southeast 4.16 321 253 3.29
Southwest 374 3.07 252 304
Precipitation Change (%)

Northeast -9.3 20.3 21.0 75
Northwest 7.2 71 27.2 57.0
Southeast -32.9 29.7 10.9 0.7
Southwest 22.3 32.3 8.8 85

Source: Cline (2007)
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Table2: Climate Response Function —Averaged Regression

Variable Coefficient t-statistic

January temperature -435.34 -1.84
April temperature -593.01 -2.31
July temperature -946.30 -2.05
October temperature 2170.91 3.68
January precipitation 31.67 11
April precipitation -14.19 -1.62
July precipitation -2.07 -1.06
October precipitation 28.62 2.86
January temperature sg. -46.11 -1.22
April temperature sq. 127.10 1.89
July temperature 9. -102.44 -0.75
October temperature 9. -264.03 -3.39
January precipitation sq. -2.56 -2.85
April precipitation sq. 0.17 2.26
July precipitation sg. 0.004 1.00
October precipitation sq. 0.03 0.33
January temperature x precipitation -32.64 -2.99
April temperature x precipitation 15.19 4,34
July temperature X precipitation -1.21 -0.94
October temperature x precipitation -2.60 -0.61
Soil typel 296.94 0.96
Soil type2 1449.99 359
Soil type3 -907.00 -1.69
Soil type4 55.70 0.13
Top-soil depth class 1 -535.40 -0.66
Top-soil depth class 2 137.34 0.16
Cultivators per hectare 112511 1.63
Bullocks per hectare -325.89 -0.42
Tractors per hectare 286077.50 3.30
Literacy 1577.35 0.85
Population density 184.36 148
Percentage of irrigated land 3786.24 325
Altitude -0.98 -1.00
I ntercept 4717.93 3.62
Number of observations 271

Adjusted R? 0.668

SANDEE Working Paper No. 45 - 09 21



Table3: Spatial Diagnostics — Averaged Regression

Weight Matrix

Diagnostic
Par ameter Rook-contiguity Queen-contiguity Distance-based
(50 km)

Moran | (error) 0.19917 (0.000) 0.19394 (0.000) 0.20392 (0.000)
LM (lag) 14.94 (0.000) 14.41 (0.000) 7.33 (0.006)
Robust LM (lag) 3.56 (0.059) 3.41 (0.065) 0.81(0.267)
LM (error) 26.53 (0.000) 26.05 (0.000) 14.55 (0.000)
Robust LM (error) 15.15(0.000) 15.05 (0.000) 8.03 (0.004)

Note: Values in the parentheses are p-values
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Table4: Climate Response Function —Pooled Regression with Spatial Correction

Without Spatial With Spatial Autocorrelation
Variable Autocorreation Spatial LagM odél Spatial Error Modd
Coeff. t -statistic Coeff. t -statistic Coeff. t -statistic
ClimateVariables
January temperature -443.3 -65 -394.8 -56 -395.3 -51
April temperature -695.5 -96 -537.1 -15 -668.5 -83
July temperature -817.9 -6.1 -575.3 -4.3 -809.3 -54
October temperature 21604 125 18330 105 1709.0 92
January precipitation 3B5 46 136 16 -73 -08
April precipitation -17.2 -6.8 -14.6 -55 -78 -29
July precipitation -22 -39 -1.3 -22 -25 -43
October precipitation 295 101 208 71 184 59
January temperature sg. -438 -39 -241 21 -114 -10
April temperature sq. 1184 6.2 1019 52 1390 6.5
July temperature sg. -96.9 -25 -25.6 -06 1177 27
October temperature sg. -264.0 -116 -234.0 -10.1 -236.3 97
January precipitation sqg. -2.8 -10.6 -26 -95 -19 -65
April precipitation sqg. 02 80 02 69 0.097 48
July precipitation sg. 0.004 34 0.005 45 0.002 21
October precipitation sg. 0.028 12 01 38 0.057 23
January temperature -36.3 -114 -385 -11.7 -26.8 =72
X precipitation
April temperature 158 157 152 147 103 105
X precipitation
July temperature -15 -40 -0.7 -18 -04 -09
X precipitation
October temperature -29 -2.3 41 -32 18 13
X precipitation
Control Variables
Cultivatorgha 3821 23 1631 10 7585 50
Bullocks/ha 91.2 04 5584 26 11056 55
Tractors/ha 153798 96 63282 41 67539 43
Literacy =~ 27800 54 4039.0 85 31602 65
Pop. Density 1288 39 1745 48 1820 47
Irrigation % 26439 93 26484 94 35381 130
Spatial Lag/Spat. Auto. 0.0649 43 057 42
No. of Obs. 5601 5691 5691
Adj. R? 05464 06517 0.7233

Note: The model specification is same as equation (11); soil variables are not reported to save space.
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Table5: ClimateChangelmpacts—Without and With Spatial Autocorrelation

< ' Without Spatial With Spatial Autocorrelation
(D?}grlil’;) Autocorrelation Spatial LagM odel Spatial Error Mode
Impacts % of 1990 Impacts % of 1990 Impacts % of 1990
Net Revenu Net Revenu Net Revenu
+2°Cl7% -812 917 142 16 -229 -26
India -1951 21 434 49 21 -023
SpecificCC
Scenario

Note: Impacts are in billion rupees, 1999-2000 prices. Net revenue in India in 1990 is Rs. 885 hillion
(1999-2000 prices)
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LIST OF FIGURES

Figurel: Moran’s| Scatter Plotsfor Dependent Variableand Error Terms
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Figure2: Sate-wiseDistribution of Climate Changel mpacts: Without and with
Spatial Correction
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Figure3: Distribution of Climate Changel mpactsacrossDistricts—Without and With Spatial Correction
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TableAl: Climate Response Function —Pooled Regression with Regional Effects

APPENDIX A

Variable Coefficient t-ratio
January temperature 21759 2.65
April temperature -694.19 -7.83
July temperature -180.75 -1.29
October temperature 247.98 1.26
January precipitation 1.80 0.18
April precipitation -21.70 -7.94
July precipitation -0.58 -1.01
October precipitation 12.16 38
January temperature sg. -58.03 -4.94
April temperature sq. 40.23 173
July temperature 9. -84.56 -1.71
October temperature sq. -56.59 -2.32
January precipitation sg. -3.45 -11.99
April precipitation sg. 0.10 4.38
July precipitation sg. 0.002 211
October precipitation sg. 0.06 2.38
January temperature x precipitation -45.27 -12.31
April temperature x precipitation 10.21 9.66
July temperature X precipitation -1.46 -3.59
October temperature x precipitation -0.63 -0.39
Soil typel -108.66 -1.13
Soil type2 832.74 6.83
Soil type3 -1274.17 -7.92
Soil type4 1077.15 6.89
Top-soil depth class 1 -423.05 -1.9
Top-soil depth class 2 147.67 0.6
Cultivators per hectare 633.89 4,04
Bullocks per hectare 450.35 2.32
Tractors per hectare 162153.10 10.75
Literacy 1778.88 304
Population density -50.02 -1.43
Percentage of irrigated land 4325.93 1574
Altitude -0.53 -1.83
Intercept 8185.50 16.23
Number of observations 5691
Adjusted R? 0.615

Note: The model specification is same as equation (11).
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