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Abstract

Climate change impact studies on agriculture can be broadly divided into those that employ
agro-economic approaches and those that employ the Ricardian approach.  This study uses the
Ricardian approach to examine the impact of climate change on Indian agriculture.  Using panel
data over a twenty year period and on 271 districts, we estimate the impact of climate change on
farm level net revenue.  The paper contributes to current knowledge on agricultural impacts by
accounting for spatial features that may influence the climate sensitivity of agriculture.  The key
findings reveal that there is a significant positive spatial autocorrelation – both in the dependent
variable, farm level net revenue, and in the error term – and that accounting for this can improve
the accuracy of climate impact studies.  Climate change results in a 9% decline in agricultural
revenues in the base model but incorporating spatial effects lowers this effect to 3%.  The available
evidence suggests that better dissemination of knowledge among farmers through both market
forces and local leadership will help popularize effective adaptation strategies to address climate
change impacts.

Key Words: Climate change; Indian agriculture; Environmental valuation; Spatial panel data
analysis; Adaptation

JEL Codes: Q54, Q1, R1
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Climate Sensitivity of Indian Agriculture

Do Spatial Effects Matter?

K.S. Kavi Kumar

1. Introduction

Over the past two decades the debate on global climate change has moved from scientific circles
to policy circles with nation-states more serious now than before in exploring a range of response
strategies to deal with this complex phenomenon that is threatening to have significant and far
reaching impacts on human society.  The Intergovernmental Panel on Climate Change (IPCC) in
its fourth assessment report observed that, ‘the warming of the climate system is now unequivocal,
as is now evident from observations of increases in global average air and ocean temperatures,
widespread melting of snow and ice, and rising global sea levels’ (Solomon et al., 2007).  Policy
responses to climate change include mitigation of greenhouse gases (GHGs) that contribute to
the expected changes in the earth’s climate and adaptation to the potential impacts caused by the
changing climate.  While the first is seen largely as a reactive response to climate change, the
second one is a proactive response.  Though GHG mitigation policies have dominated overall
climate policy so far, adaptation strategies are now coming to the fore in order to formulate a
more comprehensive policy response to climate change.

One of the crucial inputs needed for policy formulation on mitigation and adaptation is information
on the potential impacts of climate change on various climate sensitive sectors.  Impacts on
agriculture due to climate change have received considerable attention in India as they are closely
linked to the food security and poverty status of a vast majority of the population.  The studies
have used two basic methods to estimate the economic impact of climate change on agriculture1:
i) an agronomic-economic approach that focuses on the structural modeling of crop and farmer
responses, combining the agronomic response of plants with the economic/management decisions
of farmers.  Some refer to this approach as the Crop Modeling Approach and the Production
Function Approach.  Among the studies that have followed this approach are Rosenzweig and
Parry (1994), Adams et al. (1999), Kumar and Parikh (2001a), and Fischer et al. (2002); ii) a
spatial analogue approach that exploits observed differences in agricultural production and climate
among different regions to estimate a climate response function.  Some call this approach the
Ricardian approach, which is similar in spirit to the hedonic pricing technique of environmental
valuation.  Among the studies that have used the spatial analogue approach are Mendelsohn et
al. (1994), Kumar and Parikh (2001b), Niggol Seo et al. (2005), and Sanghi and Mendelsohn
(2008).

1 A few studies have used a third approach based on the agro-ecological zones (AEZ) methodology of the
Food and Agricultural Organization.  This approach assesses crop suitability to agro-ecological zones
under present and changed climatic conditions in order to estimate the change in production potential
and consequently their economics implications (see Kumar, 1998, and Darwin et al., 1995, for details).
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The Ricardian approach has received widespread attention due to its elegance and the strong
assumptions it makes although a few scholars have questioned both the assumptions and the
approach (Cline, 1996; Darwin, 1999; Quiggin and Horowitz, 1999).  Several studies in India
have followed this approach in the past to assess the climate sensitivity of Indian agriculture
(Kumar and Parikh, 2001b; Mendelsohn et al., 2001; Kumar, 2003; and Sanghi and Mendelsohn,
2008).  This paper contributes to existing knowledge on this field in India by addressing the
importance of accounting for spatial features in the assessment of climate sensitivity.  In conventional
Ricardian studies the units of analysis (say, districts) are implicitly assumed to be perfectly
substitutable across space.  However, in reality, the values of variables in districts are defined not
only by local conditions but also by the conditions in the neighbouring districts.  This is what we
refer to in this study as spatial autocorrelation of the dependent variable.  Alternatively, the spatial
distribution of agricultural land within and across districts could affect the error term structure.
Ignoring the spatial correlation of error terms can lead to an under-estimation of the true variance-
covariance matrix and hence to an over-estimation of the t-statistic.  We refer to it in this study as
the spatial autocorrelation of error terms.  The study specifically assesses the evidence for spatial
autocorrelation of variables (and errors) and attempts to correct for the same.  The paper uses
spatial panel data analysis in order to estimate the climate response function under various spatial
econometric specifications and uses the estimated climate coefficients to predict the impacts due
to climate change on Indian agriculture.

We adopt the following empirical strategy for the study: we use regression analyses and farm-
level net revenue to understand the impact of climate change on agriculture.  We construct and
use a panel data consisting of cross-sectional and time-series data for the analysis.  In the dataset,
the dependent variable (net revenue) varies from year to year, as do a number of control variables.
However, the climate variables (along with variables depicting soil characteristics) vary only
across the cross-section.  Notably, climate is not expected to change annually although the weather
may.  Since the inclusion of dummies for cross-sectional units will knock out the climate variables,
we include only dummies for time points in the pooled regression analysis. Because it is important
to control for spatial correlation, we apply a spatial econometric analysis with both spatial-lag
and spatial-error model specification to estimate the climate response of Indian agriculture.  Both
the regular and spatial panel data analyses follow identical model specifications.

The rest of the paper adopts the following structure: the next section provides a brief review of
the literature on the Ricardian approach and climate change impact studies on Indian agriculture.
The third section explains the model structure and data used.  The fourth section presents results
and discusses the distributional issues of climate change impacts on Indian agriculture.  The last
section discusses the policy implications of the findings of this research.

2. Climate Change and Agriculture

Climate change projections for India for the 2050s suggest an increase in temperature by 2-4oC
for the region south of 25oN and by more than 4oC for the northern region.  While there is likely
to be little change in the average amount of monsoon rainfall, climatologists expect the number of
rainfall days to decrease over a major part of the country.  The expected changes in climate,
especially rainfall, are also marked by significant regional variation, with the western and central
parts witnessing a greater decrease in rainfall days compared to the other parts of the country.
Climatologists have also projected an increase in the intensity and frequency of extreme events
such as droughts, floods and cyclones (NATCOM, 2004).
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Mall et al. (2006) provide an excellent review of the climate change impact studies on Indian
agriculture mainly from a physical impacts point of view.  The available evidence shows a significant
drop in the yields of important cereal crops like rice and wheat under the changed climate
conditions.  However, the studies on the biophysical impacts on some important crops like
sugarcane, cotton and sunflower are not adequate.

As mentioned above, scholars assess the economic impacts of climate change either through the
agronomic-economic approach or through the Ricardian approach.  The first approach introduces
the physical impacts (in the form of yield changes and/or area changes estimated through crop
simulation models) into an economic model exogenously as Hicks neutral technical changes.  In
the Indian context, Kumar and Parikh (2001a) have estimated the macro level impacts of climate
change using such an approach.  They estimate yield changes of rice and wheat crops using one
of the widely used crop simulation models (Erosion, Productivity and Impact Calculator – EPIC,
Stockle et al., 1992) at various sites across India.  Aggregating the site-specific estimates, the
study introduces the yield changes as supply shocks into an applied general equilibrium model of
the Indian economy (the Agriculture, Growth and Redistribution of Income Model – AGRIM,
Narayana et al., 1991) to assess the economy-wide impacts and welfare implications.  They
show that under doubled carbon dioxide concentration levels in the latter half of the 21st century
the gross domestic product would decline by 1.4 to 3 percentage points under various climate
change scenarios, with adverse poverty effects.  While this approach can account for the so-
called carbon fertilization effects2, one of the major limitations is its treatment of adaptation.
Since the physical impacts of agriculture are to be re-estimated under each adaptation strategy,
the researchers can analyze only a limited number of strategies.  It must be noted however that
this approach can easily incorporate other adaptation strategies that are triggered by market
signals.

In an alternative approach, known as the Ricardian approach, Mendelsohn et al. (1994) have
attempted to link land values to climate through reduced-form econometric models using cross-
sectional evidence.  This approach is similar to the Hedonic pricing approach of environmental
valuation.  The approach is based on the argument that, ‘by examining two agricultural areas that
are similar in all respects except that one has a climate on average (say) 3oC warmer than the
other, one would be able to infer the willingness to pay in agriculture to avoid a 3oC temperature
rise’ (Kolstad, 2000).  Since this approach is based on the observed evidence of farmer behavior,
it could in principle include all adaptation possibilities. In fact, this approach treats farmers as
though they have ‘perfect foresight’ and hence better placed to implement all adaptation options3.
The literature on the agronomic-economic and Ricardian approaches refers to farmers as ‘typical’
and clairvoyant’, respectively, based on the manner in which they address the adaptation issues.
However, if the predicted climate change is much larger than the observed climatic differences
across the cross-sectional units, the Ricardian approach cannot (even in principle) fully account
for the adaptation.  While the Ricardian approach has the potential to address the adaptation
satisfactorily, it does not completely address the issues concerning the cost of adaptation.  One

2 Higher carbon dioxide concentrations in the atmosphere under the climate change conditions could
act like aerial fertilizers and boost crop growth.  This phenomenon is called the carbon fertilization
effect.

3 Note that the non-implementation of the adaptation options is detrimental to the farmers, and hence
rational farmers would implement the adaptation options.
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of the main concerns of this approach is that it may confound climate with other unobserved
factors.  Recently, Deschenes and Greenstone (2007) and Schlenker and Roberts (2008) among
others have addressed this issue.  Further, the constant relative prices assumption used in this
approach could bias the estimates (see Cline, 1996, Darwin, 1999, and Quiggin and Horowitz,
1999, for a critique of this approach).

In the case of India, Kumar and Parikh (2001b) have used a variant of this approach and showed
that a 2oC temperature rise and a seven percent increase in rainfall would lead to almost a 8.4
percent loss in farm level net revenue (1990 net revenue expressed in 1980s prices).  The regional
differences are significantly large with northern and central Indian districts along with the coastal
districts bearing a relatively large impact.  Mendelsohn et al. (2001) have compared the climate
sensitivity of US, Brazilian and Indian agriculture using estimates based on the Ricardian approach
and have argued that using the US estimates for assessing climate change impacts on Indian
agriculture would lead to an under-estimation of impacts.  More recently, Sanghi and Mendelsohn
(2008) have compared the climate change impacts on Indian and Brazilian agriculture based on
estimates provided by the Ricardian approach.  This study follows similar methodology and data
as Kumar and Parikh (2001b) and Mendelsohn et al. (2001) and reports annual losses varying
between 4% and 26% for India under various climate change scenarios (the losses are expressed
as a percentage of farm-level net revenue).  The climate change scenarios considered cover a
temperature increase of 1 to 3.5oC and a precipitation change of -8% to +14%.  Under the
middle scenario of a 2oC increase in temperature and a 7% increase in precipitation, Sanghi and
Mendelsohn (2008) report an annual loss of 12 percent of farm-level net revenue in India.  In
comparison, our study, which uses more accurate base climate data, estimates the annual loss as
9 percent for a similar climate change scenario.

In addition to these impact studies, a number of studies in the Indian context have looked at the
vulnerability of Indian agriculture to climate risks.  O’Brien et al. (2004) attempted to identify the
so-called ‘double exposed’ districts in India – i.e., the districts that are vulnerable to climate
change as well as globalization – with a focus on the agricultural systems.   Kumar (2007)
provides an overview of these studies in an attempt to put together the available evidence on: (a)
the extent of the adverse impacts of climate change on Indian agriculture; (b) the characteristics
of relatively more vulnerable regions; and (c) effective adaptation strategies that help to ameliorate
the present and future vulnerability of agriculture.  More recently, the World Bank (2008) analyzed
the climate change impacts in the drought- and flood- affected areas of India.  Arguing that
present day development strategies must incorporate elements of climate risk management, the
authors identify a number of adaptation strategies that seamlessly merge with the overall
development agenda.

The use of cross-sectional units for assessing climate change impacts in the Ricardian approach
implies that regional fixed-effects cannot be introduced for improving model specification as
inclusion of such fixed-effects will knock out the climate coefficients, thus defeating the very
purpose of the analysis4. Hence, the Ricardian model specification assumes that all heterogeneity

4 As discussed in the next section, some recent studies (Deschenes and Greenstone, 2007) have attempted
to include regional fixed-effects in the analysis using cross-sectional data.  However, as we argue later,
such analyses may estimate the impact of weather shock and not necessarily the impact of climate and
its change.
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across cross-sectional units is controlled for by the observed explanatory variables including the
climate variables.  Thus it is very important that the model specification is accurate so that climate
coefficients capture only the influence of climate.  Further, since there is scope for learning across
spatial units through communication and information diffusion, it is important to account for spatial
correlation in the Ricardian analysis using cross-sectional data.  It is this latter issue that the
present study focuses on.  Depending on how the spatial correlation would enter into the Ricardian
analysis using cross-sectional data, some recent studies assessing climate change impacts on
agriculture in the USA have either assumed that the dependent variable is spatially lagged (Polsky,
2004) or the error term is spatially correlated (Schlenker et al., 2006). Either way, these studies
have argued for the need to account for spatial correlation in the Ricardian analysis.  The results
from these studies have suggested significant deviations between the climate change impacts of
models that account for spatial correlation and those that do not.  The present study aims to
bridge the knowledge gap in the Indian context by attempting to get accurate estimates on the
climate sensitivity of Indian agriculture through specifically accounting for spatial correlation of
the cross-sectional units in the Ricardian analysis.

3. Model Specification and Data

As changes in climate would influence crop growth, the behaviour of the producers of agricultural
goods would also alter with a changing climate.  From the producers’ point of view, changes in
climate can be considered as a change in the input structure.  Consider k purchased inputs and l
climate inputs that a production function F relates to the output.  Let P

i
 and Y

i
 be the output price

and quantity of the ith good respectively, X
ij
 the quantity of the jth purchased input used in the

production of the ith good, and q
j
 the price of the jth purchased input.  The profit-maximizing

behavior of the producer can be represented as,

ij
j

jii XqYPMax ∑−                                                                          (1)

subject to a production function,

),.....,,,,....,,( 2121 likiii EEEXXXFY ≤                                            (2)

The inclusion of environmental/climate inputs (variables E in the above equation) makes this
specification different from the conventional one.  Theoretically, profits, input demands and output
supply can be expressed as functions of measured market inputs and climate variables even
though there is no market for climate inputs.  However, researchers consider an associated
econometric analysis in order to obtain the functional relationship between output and changes in
climate inputs difficult and hence they often partition the production function represented in equation
(2).  In the case of agriculture, for example, researchers first estimate yield changes and then
introduce them into economic models as measures of supply shifts.  While scholars commonly
use such neutral technology change assumptions in the literature on climate change impacts, it is
not necessary to make such an assumption.  Thus, equation (2) becomes,

),....,,(*),....,,( 212211 likiii EEEFXXXFY ≤                                    (3)
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Such partitioning would allow fairly complex technical relationships among market inputs as
described by econometrically related production relationships and among climate inputs as
described by crop simulation models.  Researchers often integrate the crop responses to climate
parameters, estimated using crop simulation models, with either a partial or general equilibrium
framework in order to assess the economic and welfare implications.

The Ricardian approach, on the other hand, combines the climate response curves of various
crops to arrive at the overall crop response curve recognizing that different crops have different
climatic requirements.  Though the farmer would voluntarily switch from one crop to another, as
not switching over would result in losses, the transition between crops would involve costs.
Thus, to take into account the costs and benefits of adaptation, the relevant dependent variable
should be net revenue or land values (that is, capitalized net revenues), and not yields5.  Thus, the
Ricardian approach estimates a variant of equation (2).  Scholars measure the climate change
impacts as changes in net revenue or land value as shown in Mendelsohn et al. (1994) and
explained below.

Consider a crop with the aggregate demand Y
i
 and let the production function be as shown in

equation (2).  Associated with Q (which represents the set of prices of the inputs used in the
production), E and Y

i,
 there will be a cost function (obtained through cost minimization) given by

equation (4)

),,( EQYCC iii =   (4)

where, C
i
 is the cost of production of good i.  Separating ‘land’ out of the vector of inputs X and

taking its annual rent as p
l
, we can write the profit maximization equation as,

iliiii LqEQYCYPMax −− ),,(  (5)

where, L
i
 is the amount of land used for producing Y

i
.  Under perfect competition for land, we

can write the rent of land as:

i

iiii
l L

EQYCYP
q

)],,([ −
=  (6)

If ‘i’ is the best use for the land, given the environment E and factor prices Q, the observed
market rent on the land will be equal to net profits from the production of good ‘i’.  We can write
land value, which is the present value of the stream of revenue over time, as,

∫
∞ −=

0
dteqV t

ll
ρ  (7)

The Ricardian approach examines the relationship between land rent (equation 6) or land value
(equation 7) and the exogenous variables, P, Q, and E.

5 However, even net revenue cannot fully account for the costs of the transition incurred by the farmer
while moving from one crop to another in response to the changes in the climatic conditions.
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Under the assumption that environmental changes will leave market prices unchanged, we can
write the welfare value of a change in the environment as,

]),,([]),,([)( AiiABiiBBA EQYCYPEQYCYPEEW ∑∑ −−−=− (8)

plugging equation (6) in equation (8), we can show that,

)()( EAlAEBlBBA LqLqEEW −=− ∑   (9)

where q
lA
 and q

lB
 are land prices under different environmental conditions.  Alternatively, we give

the present value of this welfare change by,

∫ ∑
∞ − −=−

0
)()( lAlB

t
BA VVdteEEW ρ

(10)

Equations (9) and (10) are the definitions of the Ricardian estimate of the value of environmental
changes.  If the output prices do not change under changed climate conditions, the change in
aggregate land values or the change in the present value of net revenues captures exactly the
value of the change in the climate.

The empirical strategy of the study is to estimate a functional relationship between land value, or
net revenue, and climate variables using cross-sectional data while controlling for variables that
could cause variability in the dependent variable.  We could then use the estimated functional
relationship to assess the climate change impacts.

Scholars have used a variant of the Ricardian approach due to the non-existence of well functioning
land markets in the developing countries (see, Dinar et al., 1998).  In place of land values, in the
earlier Indian studies scholars have used farm level net revenue as a welfare indicator while they
have assessed the value of the change in the environment/climate through a change in farm level
net revenue.  They control for variability in the dependent variable caused by factors other than
climate through: (a) soil characteristics (both soil quality and top-soil depth could differ significantly
across the cross-section leading to variability in the farm-level net revenue); (b) the level of
technology penetration (wide divergence across the cross-sectional units in terms of draught
force utilization, mechanization, and penetration of new growing technologies could lead to
variability in the dependent variable); (c) the extent of development (opportunity cost of land and
market access and alternative livelihood opportunities could differ across the cross-sectional
units and hence contribute to the variability in the dependent variable).  Differences across cross-
sectional units in physical characteristics such as the extent of the day length could also contribute
to variability in the farm-level net revenue.

It is possible that some of these control variables are endogenous in nature and hence do not
qualify as exogenous variables.  However, we have included them as exogenous variables in line
with the existing literature on climate change impacts (Kumar and Parikh, 2001b; Sanghi and
Mendelsohn, 2008) in order to facilitate comparability of results.
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We thus specify the Ricardian model as follows:

),,,,,

,,,,,,,,( 22

ALTIRRHYVCULTIVLITPROPPOPDEN

TRACTORBULLOCKSOILRTRRTTfNR jjjjjj=
   (11)

where, NR represents farm level net revenue per hectare in constant rupees and T and R represent
temperature and rainfall respectively.  It is noteworthy that based on the existing literature we
adopt a quadratic functional specification along with climate interaction terms.  The control variables
include soil (captured through dummies representing several soil texture classes and top-soil
depth classes), the extent of mechanization (captured through the number of bullocks and tractors
per hectare), the percentage of literate population, population density, altitude (to account for
solar radiation received), the number of cultivators (since we could not account for the cost of
labour while calculating the dependent variable), the fraction of area under irrigation and the
fraction of area under high-yielding variety seeds.  We do not include the prices – output as well
as input – in the model.  This is because an earlier study by Kumar and Parikh (2001b) has
shown that the climate coefficients have not significantly changed when they include the prices of
major cereal crops in the model specification.  However, no evidence exists from previous studies
about the influence of input prices.  We therefore assume their cross-sectional variation to be not
significant here.

We use pooled cross-sectional and time-series data to estimate the above model.  Districts are
the lowest administrative unit at which reliable agricultural data is available.  We use a comprehensive
district level dataset for the period 1966 to 1986 for the purpose of the analysis.  We assemble
agricultural data at district level in the dataset along with the relevant demographic and macro
economic data.  The dataset covers districts defined according to the 1961 census across thirteen
major states of India (Andhra Pradesh, Haryana, Madhya Pradesh, Maharashtra, Karnataka,
Punjab, Tamil Nadu, Uttar Pradesh, Bihar, Gujarat, Rajasthan, Orissa and West Bengal).  The
dataset includes 271 districts in all.

The variables covered in the dataset include the gross and net cropped area; the gross and net
irrigated area; the cultivators; the agricultural labourers; the cropped area under high-yielding
variety seeds; the total cropped area under five major crops (rice, wheat, maize, bajra and
jowar) and fifteen minor crops (barley, gram, ragi, tur, potato, ground nut, tobacco, sesamum,
ramseed, sugarcane, cotton, other pulses, jute, soybean, and sunflower); bullocks; tractors;
literacy rate; population density; fertilizer consumption (N, P, K) and prices; agricultural wages;
crop produce; farm harvest prices; soil texture and top soil depth.  For purposes of analysis, we
define farm level net revenue per hectare as follows:

( )
AreaTotal

CostsLaborandFertilizervenueGross
hapervenueNet

)()Re(
Re

−=       (12)

where, we calculate gross revenue over the twenty crops mentioned above and where the total
area is the cropped area under the twenty crops, the fertilizer costs are the total yearly costs
incurred towards the use of fertilizer for all the crops and the labour costs are the yearly expenses
towards hiring agricultural labour.  It is noteworthy that we do not include costs attributable to
cultivators, irrigation, bullocks and tractors in the net revenue calculations because appropriate
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prices are difficult to identify.  However, we use these variables as control variables in the model
as specified in equation (11).

Unfortunately, there is no ‘clean’ climate data available for the analysis.  Meteorological stations
typically collect meteorological data and any district may have one or many stations within its
boundary.  Since all other data is attributable to a hypothetical centre of the district, it is necessary
to work out the climate data too at the centre of the district.  For this purpose, it is customary to
interpolate meteorological station data to arrive at a district specific climate (see Kumar and
Parikh, 2001b, and Dinar et al., 1998, for more details on the surface interpolation employed to
generate district level climate data). We use climate data corresponding to about 391 meteorological
stations spread across India for the purpose of developing the district level climate. The data on
climate – at the meteorological stations and hence at the districts – correspond to the average
observed weather over the period 1951-1980 as documented in a recent publication of the India
Meteorological Department.  We represent all the climate variables through four months, January,
April, July and October, corresponding to the four seasons.  The climate variables include average
daily temperature and monthly total rainfall in the four months mentioned above.  The average
temperature and rainfall for each of these four months over the period 1951-1980 for each of the
271 districts represent the climate variables used in this study.  Thus, these data points do not
vary over time but instead vary across districts.

We measure the dependent variable (namely, net revenue) in equation (11) and some of the
explanatory variables (such as population density, tractors, bullocks, etc.) for every single year
of the entire time period.  If annual weather data for each district were available for a continuous
period of time, then we could have used the rolling averages of 30 year weather data as ‘climate’
for each year.  That is, for the year 1966, the average weather over the period 1937 to 1966
would serve as climate, whereas for the year 1970, the average weather over the period 1941 to
1970 would serve as climate.  This would ensure that the farmer in each year responds to the
climate that she experiences.  However, reliable annual weather data for a long period of time is
not available in India.  Hence, climate data in the analysis corresponds to the average weather
over the period 1951 to 1980.  However, we work under the assumption that the climate has not
changed significantly over the study period and that the average weather over the 30 year period
is highly correlated6.

Given the scope for the presence of unobserved variables that could confound with climate
variables, it is possible to employ the district fixed effects specification for efficient estimation.
Such a specification would knock out the climate coefficients which are invariant over time.
Deschenes and Greenstone (2007) in a recent study on US agriculture have used county fixed-
effects specification and have assessed the value of weather shocks to the farmer as against the
climate change impacts.  The present study with its focus on climate change impacts attempts to
address this issue by including state fixed-effects.  The year effects are captured through year
fixed effects after the Hausman test rejected the null hypothesis, implying that the random effects
model produces biased estimates.  Further, since the units of analysis (i.e., districts) differ

6 Sanghi and Mendelsohn (2008) in their analysis of the climate change impacts on Indian agriculture
use climate data corresponding to the period 1930-1960 and report almost similar results as in this
study.  This is seen as justification for the above claim that the climate has remained stable over the
study period.
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significantly in size and agricultural activities, the measurement errors might also substantially
differ across districts.  Hence, we weigh the data for each unit of analysis by the total area under
the twenty crops in order to adjust for heteroscedasticity.

3.1 Climate Sensitivity and Spatial Autocorrelation

We can introduce spatial features into the Ricardian approach based on two arguments: (i) theory-
driven and (ii) data-driven.  In the theory-driven arguments, the focus is on interacting agents and
social interactions (Anselin, 2002).  This means that agents across space communicate with each
other in order to learn about farm management practices and response strategies in order to
handle climate and other risks.  The assumption is that such interaction results in a spatially
correlated dependent variable (and, sometimes, independent variables also). The resultant
econometric specification then involves including a spatially lagged dependent variable as an
additional independent variable.

In the data-driven specification, the focus is on accounting for the inefficiency being created by
the possible presence of spatial correlation in the error terms of the linear regression models.
Two immediate examples of these two types of specification can be seen in the climate change
context.  While Polsky (2004) introduces spatial econometric specification of the Ricardian
model mainly to account for social interactions, Schlenker et al. (2006) bring in spatial features
to arrive at efficient estimates of regression coefficients.  In most Ricardian studies of climate
change impacts (including those carried out in the Indian context), the t-statistic values are very
high reflecting a possible spatial correlation of the error terms.  In fact, Schlenker et al. (2006)
argue that the t-values in models that do not account for spatial heteroskedasticity of error terms
are likely to be 9 times larger than those in models that account for spatial correlation of the error
terms.  Either way, the estimation procedure involves specifying the spatial weight matrix, which
provides a structure to the assumed spatial relationships.

Thus, the presence of spatial autocorrelation necessitates re-specification of the model as either
spatial-lag or spatial-error model as shown below:

Spatial-error model: y = Xβ + η, where η = ρρρρρWη +ε (13a)
Spatial-lag model: y = ρρρρρWy + Xβ + ε  (13b)

where, y is (nx1) the vector of dependent variable observations, X is (nxm) the matrix of
observations on independent variables including the climate and other control variables, β is
(mx1) the regression coefficient vector, η is (nx1) the vector of spatially correlated error terms, ρρρρρ
is (1x1) the spatial autoregressive parameter, W is (nxn) the spatial weights matrix, and e is (nx1)
the vector of random error terms.   Note that y and X are respectively the left hand and right hand
side variables specified in equation (11) above.

One of the crucial inputs that spatial analysis needs is the weight matrix W.  We use three weight
matrices – rook-based contiguity, queen-based contiguity, and distance-based contiguity – in the
present analysis.  We generate these weight matrices for the Indian districts in GeoDa software7.
We carry out a spatial econometric analysis in GeoDa and STATA software for single cross-

7 We use the spatial econometric software developed by Prof. Luc Anselin of the University of Illinois
(version 0.9.5).
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sections.  However, since it is not feasible to estimate the spatial fixed-effects model in GeoDa
(and also in STATA for computational limitations), we transfer the weight matrices via R-software
to ASCII data format.  We estimate the spatial panel models – spatial-lag and spatial-error –
using MATLAB software8 as it provides scope for reading sparse matrices.

3.2 Climate Change Projections for India

For the analysis, we use the climate change projections for India reported in Cline (2007).  The
climate change projections are the average of predictions of six general circulation models including
HadCM3, CSIRO-Mk2, CGCM2, GFDL-R30, CCSR/NIES, and ECHAM4/OPYC3.  Table
1 shows the region-wise and season-wise temperature and rainfall changes for the period 2070-
2099 with reference to the base period 1960-1990.  From these regional projections, we assess
the state-wise climate change predictions by comparing the latitude-longitude ranges of the regions
with those of the states.  In addition to this India-specific climate change scenario, we also assess
the impacts for two illustrative uniform climate change scenarios (a +2oC temperature change
along with a +7 percent precipitation change; and a +3.5oC temperature change along with a
+14 percent precipitation change) that embrace the aggregate changes outlined in the fourth
assessment report of IPCC (Solomon, 2007).

4. Results and Discussions

The results are reported in three sub-sections: in the first sub-section, we present the estimates of
the classic Ricardian approach, which is followed by a discussion on spatial diagnostics with
different weight matrices; the last sub-section reports the estimates of the panel data analysis
under spatial-lag and spatial-error specifications and presents the estimates of climate change
impacts on Indian agriculture.

4.1 Climate Response Function – Averaged Regression

For purposes of comparison and carrying out spatial diagnostic tests, we average the data
over the entire period of analysis to create a single cross-sectional dataset.  We use this single
cross-sectional dataset for estimating equation (11) using the weighted least squares approach,
with area under cropland in each district serving as the weight.  Table 2 reports the estimated
regression coefficients.  We use the reported coefficients as the basis for interpreting the rest of
the analyses.

The estimated climate response function for the average data over the period 1966-1986
 has several expected features with about 66 percent goodness of fit.  A large number of climate
variables are significant.  Since soils tend to differ across districts, we include the soil
variables mainly to control for the influence of cross-sectional variability of soil quality on the
dependent variable.  The other control variables include cultivators per hectare, bullocks per
hectare and tractors per hectare.  Both cultivators and bullocks have a mixed expected influence
on the farm-level net revenue.  On the one hand, the higher values of these variables reduce the

8 J. Paul Elhorst (www.spatial-econometrics.com) has written the MATLAB codes for spatial panel
analysis.
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cost to the farmer, but on the other hand high values also represent a low technological base.
Tractors per hectare clearly have a high significant positive influence on farm-level net revenue.
Literacy and population density have a positive effect as expected.  The percentage of land
under irrigation clearly increases farm-level net revenue.  Some studies have argued against the
use of irrigation as one of the explanatory variables due to the potential endogeneity problem and
have suggested instead the use of area under high-yielding variety cultivation.  However, since
most of the irrigated land also cultivates high-yielding variety crops, these two variables could be
largely collinear.

The climate variables are largely significant and the estimated response function appears to be
non-linear, in line with available evidence in the literature.  The temperature effects are far higher
than the precipitation effects.  The temperature coefficients are all negative in January (Winter),
April (Spring), and July (Summer) but positive in October (Autumn).  While higher temperatures
during the hot spring and summer days would adversely influence crop growth, warmer autumns
could lead to an enhanced growing season.  Higher temperature during winter could favourably
influence pest growth and hence could have an adverse impact on crop growth.  Higher precipitation
as expected is beneficial in the winter and autumn seasons, but harmful during spring and summer.

The temperature response functions exhibit mixed curvature properties, with the winter and autumn
temperatures showing a concave nature, and the spring temperature showing a convex nature.
The precipitation response functions on the other hand are convex for the spring and summer, but
concave for the winter precipitation. The autumn precipitation is almost linear with a small square
coefficient.

 For purposes of comparison with the spatial models, we carry out a pooled regression analysis
covering all the years of the study period with exactly similar specification as the averaged
regression discussed here.  In addition to all the variables discussed above, we include the year
fixed effects in the panel data analysis.  All the coefficients retained the sign and magnitude in the
pooled regression and have improved statistical significance.  Almost all the climate coefficients
were statistically significant in the pooled regression.  We report these results in Table 4 along
with spatial panel data analyses results.

As discussed above, a valid criticism of the Ricardian approach is unobserved cross-sectional
variables confounding with climate variables.  And including district fixed effects in the pooled
data analysis is not feasible given the non-varying nature of some of the independent variables,
including the climate variables, over the years.  In an attempt to improve the model specification,
we added regional fixed effects to the equation (11) in the form of state dummies.  We report the
estimated coefficients in Table A1 in the appendix.  Almost 70 percent of the climate variables
remained significant in the model with state dummies, confirming that regional fixed effects have
not nullified the influence of climate on farm-level net revenue.  Barring a few exceptions, the
direction of influence also remained similar between models without and with regional fixed effects.
The magnitude of individual coefficients however has changed as was to be expected.  But, we
did not include the regional dummies for the rest of the analysis.

4.2 Diagnostics for Spatial Dependence

We analyze the spatial clustering of the dependent variable (i.e., net revenue per hectare) and the
residual of the ordinary least squares regression by constructing Moran scatter plots for several
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time points in the period 1966-1986.  Figure 1 shows the scatter plots along with the Moran’s I
value for the years 1970, 1975, 1980 and 1985.  The top panel shows the Moran scatter plot for
the dependent variable while the bottom panel shows that for the error.  The scatter plot is graph
of Wy versus y, where W is a row-standardized spatial weight matrix and y = [(variable value –
mean of variable)/standard deviation of variable].  We use a rook-contiguity based weight matrix
for constructing the Moran scatter plots.  The clustering of values in the upper right quadrant and
lower left quadrant represents a significant positive spatial autocorrelation.  As seen in Figure 1,
for all the four periods for which we report scatter plots, the dependent variable and the error te
The indication of significant spatial clustering given by the spatial autocorrelation statistic represents
only the first step in the analysis of spatial data.  We carry out spatial diagnostic tests on the
averaged regression reported in the previous section to statistically assess the extent of spatial
dependence in the data and to identify the appropriate correction for removing the spatial
dependence in the data.  Table 3 reports various test statistics under different weight matrix
specifications.  The weight matrices considered include rook-contiguity based, queen-contiguity
based, and distance-based weight matrices.

The first row in Table 3 shows the Moran I statistic of the error along with the associated probability.
It shows the statistic to be highly significant indicating the problem of spatial dependence in the
data.  The value of Moran I statistic is close to 0.2 across the different weight matrix specifications
indicating that alternative weight matrices may not have a significant influence on the analysis.

We use the Lagrange Multiplier test to determine which spatial model should be used for spatial
correction (spatial-lag or spatial-error).  The sequence of the search is as follows: if both Lagrange
Multiplier (lag and error) statistics are significant, then we consider the robust versions of these
tests to be significant and we choose the model specification with the higher significance for the
spatial analysis.  In all cases reported in Table 3, the Lagrange Multiplier (lag and error) statistics
are highly significant, necessitating the need for examining the robust Lagrange Multiplier test
statistic.  In rook-contiguity and queen-contiguity based weight matrix specifications, the robust
Lagrange Multiplier statistics for both lag and error are significant, with the latter highly significant
compared to the former.  In the case of distance-based weight matrix specification, however, the
robust Lagrange Multiplier tests suggest the spatial-error model as the preferred model for spatial
correction.

Based on these results, we attempt spatial correction using both spatial-lag and spatial-error
model specifications.  We discuss these results in the next section.

4.3 Effect of Spatial Autocorrelation on Climate Sensitivity

The evidence presented above based on averaged regression makes it clear that: (a) the choice
of the weight matrix may not have a significant influence on the analysis, and (b) the choice
between the model for spatial correction – namely, spatial-lag and spatial-error – is not obvious,
with the robust Lagrange Multiplier test statistic remaining significant under lag as well as error
specifications.  Hence, we use both these models for spatial correction and re-estimate equation
(11) with the modifications specified in equations (13a) and (13b) using the panel data over the
period 1966 to 1986.  We base all the estimates on fixed (year) effects specification in the
pooled data and the observations are weighted by the total area under all the crops considered
in the analysis.  Thus, we attempt two kinds of heteroscedasticity corrections in the spatial analysis:
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the first is through the crop area in each district in order to account for differences in the size of
the districts and hence the difference in the measurement error; and the second is through the
weight matrix in order to account for spatial dependence in the data.  We use the rook-contiguity
based weight matrix to estimate the spatial models.

Table 4 shows the climate response functions estimated with and without consideration of spatial
autocorrelation.  Though the adjusted R-square value is higher under both the spatial models, it
is what is known as the pseudo R-square and hence not exactly comparable with that in OLS.
The climate coefficients in both the spatial-lag and spatial-error models are largely significant and
have a similar influence as the base model without the spatial correction.  Barring a few exceptions,
the climate coefficients in the models that account for spatial autocorrelation (either through
spatial-lag or spatial-error models) are uniformly lower than that which ignores the presence of
spatial autocorrelation.  This implies that the explanatory power of the climate variables that we
attributed to their within district value in the base model was partly due to the influence of
neighbouring districts.

With regard to the choice between the two spatial models, the diagnostic tests were inconclusive
as discussed in the previous section.  The coefficient of the spatially lagged farm-level net revenue
in the spatial-lag model and the coefficient of spatially correlated errors in the spatial-error model
are both positive and highly significant.  The model performance parameters, the higher adjusted
R-square value (0.72 vs. 0.65) and the higher log-likelihood value (-127406 vs. -127861),
indicate that the spatial-error model is preferred over the spatial-lag model.

In order to gain insight into the influence of various climate change scenarios on Indian agriculture,
we assess the impacts based on the estimated climate response functions.  We consider two
climate scenarios: a) one illustrative scenario with a +2oC uniform change in temperature and a
+7 percent uniform change in precipitation; b) one India-specific scenario with the expected
regional changes in temperature and precipitation as reported in Table 1.  We measure the climate
change induced impacts through changes in the net revenue triggered by the changes in the
climate variables.  We estimate the impacts for each year at the individual district level, which we
then aggregate to derive the national level impacts.  We report the average impacts over all the
years in Table 5.  The Table reports the all India level impacts estimated in each time period as a
percentage of the 1990 all India net revenue expressed in 1999-2000 prices.  We consider the
1990 net revenue mainly to accommodate a comparison with previous results reported in the
literature.  We interpret the impacts as a change in 1990 net revenue if future climate changes
were to be imposed on the 1990 economy and are annual impacts.  We estimate that the overall
impacts (for the same climate change scenario) using climate coefficients obtained from the model
that accounts for spatial autocorrelation (either through spatial-lag or through spatial-error
specification) are significantly lower than those obtained from the model that ignores the spatial
effects.

Since the aggregate impacts mask significant regional differences, Figures 2 and 3 compare the
distribution of climate change impacts at the state and district levels between the models that
account for spatial autocorrelation and those that do not.  For these figures, we use the India
specific climate change scenario that incorporates non-uniform changes in temperature and
precipitation across regions.  The results show that climate change is likely to adversely affect
agriculture in almost all the regions in India with the exception of the eastern states of Bihar and
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West Bengal along with the inland region of Karnataka.  Severe impacts are borne by the high-
value agricultural regions of Haryana, Punjab and Uttar Pradesh, along with the dry regions of
Gujarat and Rajasthan.  Coastal states like Andhra Pradesh and Tamil Nadu also lose out under
changed climatic conditions.  Between the models that do not incorporate spatial correction and
the models that do, we predict significant changes in Andhra Pradesh, Tamil Nadu, Rajasthan,
Madhya Pradesh and to some extent in Uttar Pradesh.  This means that in the case of these states
the model without spatial correction overestimated the climate change impacts.

5. Conclusions and Policy Recommendations

This paper contributes to existing knowledge on the impacts of climate change on Indian agriculture
by accounting for spatial issues in a Ricardian framework.  Using approximately 20 years of
district level agricultural data coupled with climate and soil data, the analysis employs spatial
panel data models to explore these issues.  Besides estimating the climate response function for
Indian agriculture, the paper estimates the expected impacts due to climate change on Indian
agriculture.

The evidence presented in this paper suggests that, (a) accounting for spatial autocorrelation is
important due to the presence of significant spatial clustering of the data; and (b) the climate
change impacts are significantly lower after incorporating spatial correction either through spatial-
lag or through spatial-error model specifications.  The choice between spatial-lag and spatial-
error model specifications for spatial correction is largely inconclusive.  However, purely from a
model performance perspective, the spatial-error model has a slight edge over the spatial-lag
model.

An illustrative climate change scenario that envisages a +2oC temperature change and a +7
percent precipitation change uniformly across India would result in an estimated 9 percent decline
in farm-level net revenue annually.  This decline is estimated to be 3 percent once we account for
spatial effects using the spatial-error model.

 The results from this paper are lower than the range of results obtained from other climate
change agricultural impact studies in India.  Relative to the annual decline of 3 percent in farm-
level net revenue estimated here, Kumar and Parikh (2001b) estimate a 8.4 percent decline
while Sanghi and Mendelsohn (2008) conclude that climate impacts will result in a 12 percent
decline annually in farm-level net revenue in India.  The impacts on the GDP estimated by Kumar
and Parikh (2001a) are not strictly comparable with those reported in the above studies due to
the partial equilibrium approach adopted in the Ricardian framework.  However, yield losses
estimated by Kumar and Parikh (2001a) and others reported in Mall et al. (2006) are relatively
higher than the losses in net revenue estimated by the Ricardian studies.  In sum, the estimates of
climate change impacts on Indian agriculture from this paper are lower than the reported estimates
in the existing literature.

Since uniform changes in climate considered in the illustrative scenario would mask the expected
regional variation in the climate change, we also estimate the impacts due to an India-specific
climate change scenario along with the regional distribution of impacts.  With the exception of the
eastern states of Bihar and West Bengal and the inland region of Karnataka, in all other regions
of India climate change is likely to have an adverse impact on agriculture. While the high-value
agricultural regions of Haryana, Punjab and Uttar Pradesh together with the dry regions of Gujarat
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and Rajasthan bear significant impacts, coastal states like Andhra Pradesh and Tamil Nadu also
suffer to some extent in a consideration of overall impacts.

In the case of Andhra Pradesh, Tamil Nadu, Rajasthan, Madhya Pradesh and, to some extent,
Uttar Pradesh, incorporating the spatial effects results in a lowering of the climate change impacts
on agriculture.  This suggests that in these states, a strong flow of information amongst farmers
may contribute to better adaptation and thereby lower the impact of climate change on agriculture.
The assessment of climate change impacts on Indian agriculture through a careful consideration
of spatial issues in the Ricardian framework that this study has carried out would be useful in
providing a more accurate picture of the potential impacts of climate change on Indian agriculture.
However, from a policy perspective, it would be helpful to identify factors that contribute to the
observed spatial correlation of variables across districts.  Such knowledge would be useful in
designing policies that contribute to enhancing the facilitating factors.

Focus group interviews from the field indicate that the main sources of information to
farmers are the more affluent farmers in the neighbourhood, fertilizer and pesticide dealers,
seed providers, and the better informed family members. Contrary to the general belief
that agricultural extension centres operate as the primary source of information, the evidence
from the field suggests that, in reality, farmers benefit very little from these government outfits.
While market sources seem to have the appropriate self-regulated checks against the provision
of wrong information, it is important to ensure that incorrect information does not reach the
farmers even inadvertently.

The field studies also reveal that policy makers should explore and experiment with new sources
of information diffusion.  Given the fragmented nature of Indian agricultural lands, the large scale
participation of the corporate sector in providing agricultural extension services would be difficult,
thereby necessitating the exploration of other options.  Among other options, the farmers favoured
in particular the participation of agricultural cooperatives, NGOs, and dealers of inputs and
fertilizers in information diffusion.  In this context, it might be worthwhile to carefully study
other country experiences in order to identify the routes through which the State can provide
agricultural extension services to the farmers in India.  For instance, in Ecuador, the agricultural
extension workers operate in tandem with the farmers through share cropping in order to ensure
proper information diffusion.  On the other hand, Chile finances the costs of private sector firms
which transfer technology know-how and information on new agricultural practices to small-
scale farmers.

The Ricardian approach we used in this study deals largely with private adaptation measures
undertaken by farmers for whom not adapting (that is, through changes in crop-mix and crop
management practices) would be sub-optimal.   However, climate change also requires large-
scale public adaptation alongside the afore-mentioned private adaptation practices.  Future research
in this field could focus on the nature of such adaptation as well as assessment of cost-effective
adaptation strategies in order to ameliorate the adverse impacts of climate change on Indian
agriculture.
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Table 1: Projected Changes in Climate in India: 2070-2099

LIST OF TABLES

Jan.-March April-June July-Sep. Oct.-Dec.

Temperature Change (oC)

Northeast 4.95 4.11 2.88 4.05

Northwest 4.53 4.25 2.96 4.16

Southeast 4.16 3.21 2.53 3.29

Southwest 3.74 3.07 2.52 3.04

Precipitation Change (%)

Northeast -9.3 20.3 21.0 7.5

Northwest 7.2 7.1 27.2 57.0

Southeast -32.9 29.7 10.9 0.7

Southwest 22.3 32.3 8.8 8.5

Source: Cline (2007)
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Table 2: Climate Response Function – Averaged Regression

Variable Coefficient t-statistic

January temperature -435.34 -1.84

April temperature -593.01 -2.31

July temperature -946.30 -2.05

October temperature 2170.91 3.68

January precipitation 31.67 1.11

April precipitation -14.19 -1.62

July precipitation -2.07 -1.06

October precipitation 28.62 2.86

January temperature sq. -46.11 -1.22

April temperature sq. 127.10 1.89

July temperature sq. -102.44 -0.75

October temperature sq. -264.03 -3.39

January precipitation sq. -2.56 -2.85

April precipitation sq. 0.17 2.26

July precipitation sq. 0.004 1.00

October precipitation sq. 0.03 0.33

January temperature x precipitation -32.64 -2.99

April temperature x precipitation 15.19 4.34

July temperature x precipitation -1.21 -0.94

October temperature x precipitation -2.60 -0.61

Soil type 1 296.94 0.96

Soil type 2 1449.99 3.59

Soil type 3 -907.00 -1.69

Soil type 4 55.70 0.13

Top-soil depth class 1 -535.40 -0.66

Top-soil depth class 2 137.34 0.16

Cultivators per hectare 1125.11 1.63

Bullocks per hectare -325.89 -0.42

Tractors per hectare 286077.50 3.30

Literacy 1577.35 0.85

Population density 184.36 1.48

Percentage of irrigated land 3786.24 3.25

Altitude -0.98 -1.00

Intercept 4717.93 3.62

Number of observations 271

Adjusted R2 0.668
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Moran I (error) 0.19917 (0.000) 0.19394 (0.000) 0.20392 (0.000)

LM (lag) 14.94 (0.000) 14.41 (0.000) 7.33 (0.006)

Robust LM (lag) 3.56 (0.059) 3.41 (0.065) 0.81 (0.267)

LM (error) 26.53 (0.000) 26.05 (0.000) 14.55 (0.000)

Robust LM (error) 15.15 (0.000) 15.05 (0.000) 8.03 (0.004)

Table 3: Spatial Diagnostics – Averaged Regression

Diagnostic
Parameter

Weight Matrix

Rook-contiguity Queen-contiguity Distance-based
(50 km)

Note: Values in the parentheses are p-values
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Climate Variables

January temperature -443.3 -6.5 -394.8 -5.6 -395.3 -5.1

April temperature -695.5 -9.6 -537.1 -7.5 -668.5 -8.3

July temperature -817.9 -6.1 -575.3 -4.3 -809.3 -5.4

October temperature 2160.4 12.5 1833.0 10.5 1709.0 9.2

January precipitation 38.5 4.6 13.6 1.6 -7.3 -0.8

April precipitation -17.2 -6.8 -14.6 -5.5 -7.8 -2.9

July precipitation -2.2 -3.9 -1.3 -2.2 -2.5 -4.3

October precipitation 29.5 10.1 20.8 7.1 18.4 5.9

January temperature sq. -43.8 -3.9 -24.1 -2.1 -11.4 -1.0

April temperature sq. 118.4 6.2 101.9 5.2 139.0 6.5

July temperature sq. -96.9 -2.5 -25.6 -0.6 117.7 2.7

October temperature sq. -264.0 -11.6 -234.0 -10.1 -236.3 -9.7

January precipitation sq. -2.8 -10.6 -2.6 -9.5 -1.9 -6.5

April precipitation sq. 0.2 8.0 0.2 6.9 0.097 4.8

July precipitation sq. 0.004 3.4 0.005 4.5 0.002 2.1

October precipitation sq. 0.028 1.2 0.1 3.8 0.057 2.3

January temperature -36.3 -11.4 -38.5 -11.7 -26.8 -7.2
x precipitation

April temperature 15.8 15.7 15.2 14.7 10.3 10.5
x precipitation

July temperature -1.5 -4.0 -0.7 -1.8 -0.4 -0.9
 x precipitation

October temperature -2.9 -2.3 -4.1 -3.2 1.8 1.3
x precipitation

Control Variables

Cultivators/ha 382.1 2.3 163.1 1.0 758.5 5.0

Bullocks/ha 91.2 0.4 558.4 2.6 1105.6 5.5

Tractors/ha 153798 9.6 63282 4.1 67539 4.3

Literacy 2780.0 5.4 4039.0 8.5 3160.2 6.5

Pop. Density 128.8 3.9 174.5 4.8 182.0 4.7

Irrigation % 2643.9 9.3 2648.4 9.4 3538.1 13.0

Spatial Lag/Spat. Auto. 0.0649 4.3 0.57 4.2

No. of Obs. 5691 5691 5691

Adj. R2 0.5464 0.6517 0.7233

Table 4: Climate Response Function – Pooled Regression with Spatial Correction

Variable
Without Spatial
Autocorrelation

With Spatial Autocorrelation

Spatial Lag Model Spatial Error Model

Coeff. t -statistic Coeff. t -statistic Coeff. t -statistic

Note: The model specification is same as equation (11); soil variables are not reported to save space.
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Table 5: Climate Change Impacts – Without and With Spatial Autocorrelation

Scenario
(DT/DP)

Without Spatial
 Auto correlation

With Spatial Autocorrelation

Spatial Lag Model Spatial Error Model

Impacts % of 1990
Net Revenu

Note: Impacts are in billion rupees, 1999-2000 prices.  Net revenue in India in 1990 is Rs. 885 billion
(1999-2000 prices)

+2oC/7% -81.2 -9.17 14.2 1.6 -22.9 -2.6

India -195.1 -22.1 43.4 4.9 -2.1 -0.23
Specific CC
Scenario

Impacts % of 1990
Net Revenu

Impacts % of 1990
Net Revenu
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Figure 1: Moran’s I Scatter Plots for Dependent Variable and Error Terms
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Figure 2: State-wise Distribution of Climate Change Impacts: Without and with
Spatial Correction
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Figure 3: Distribution of Climate Change Impacts across Districts – Without and With Spatial Correction

Note: Base – Model without spatial correction
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Variable Coefficient t-ratio

January temperature 217.59 2.65

April temperature -694.19 -7.83

July temperature -180.75 -1.29

October temperature 247.98 1.26

January precipitation 1.80 0.18

April precipitation -21.70 -7.94

July precipitation -0.58 -1.01

October precipitation 12.16 3.8

January temperature sq. -58.03 -4.94

April temperature sq. 40.23 1.73

July temperature sq. -84.56 -1.71

October temperature sq. -56.59 -2.32

January precipitation sq. -3.45 -11.99

April precipitation sq. 0.10 4.38

July precipitation sq. 0.002 2.11

October precipitation sq. 0.06 2.38

January temperature x precipitation -45.27 -12.31

April temperature x precipitation 10.21 9.66

July temperature x precipitation -1.46 -3.59

October temperature x precipitation -0.63 -0.39

Soil type 1 -108.66 -1.13

Soil type 2 832.74 6.83

Soil type 3 -1274.17 -7.92

Soil type 4 1077.15 6.89

Top-soil depth class 1 -423.05 -1.9

Top-soil depth class 2 147.67 0.6

Cultivators per hectare 633.89 4.04

Bullocks per hectare 459.35 2.32

Tractors per hectare 162153.10 10.75

Literacy 1778.88 3.04

Population density -50.02 -1.43

Percentage of irrigated land 4325.93 15.74

Altitude -0.53 -1.83

Intercept 8185.50 16.23

Number of observations 5691

Adjusted R2 0.615

Table A1: Climate Response Function – Pooled Regression with Regional Effects

APPENDIX A

Note: The model specification is same as equation (11).
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