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Abstract

Occupational health, well researched in developed countries, remains neglected in developing
countries.  One issue of particular importance is the use of pesticides on farms, which can have
both chronic and acute impacts on human health.  This paper focuses on acute health impacts
associated with pesticide exposure in rural Nepal.  Based on data from 291 households, the
study finds that the magnitude of exposure to insecticides and fungicides can significantly influence
the occurrence of health symptoms.  The predicted probability of falling sick from pesticide-
related symptoms is 133% higher among individuals who apply pesticides compared to individuals
in the same household who are not directly exposed.  Households bear an annual health cost of
NPR 287 ($4) as a result of pesticide exposure.  These costs vary with fungicide exposure.  A
ten percent increase in hours of exposure increases costs by about twenty-four percent.  In
aggregate, pesticide exposure contributes to a health burden of NPR 1,105,782 (US $ 15,797)
per year in the study area.  Although pesticide use in Nepal is low relative to many other countries
in the world, this study, which is the first of its kind in Nepal, suggests that farmers and policy
makers need to become aware of the health impacts of pesticide use as they continue to promote
its use in Nepal.

Key words: Pesticides, acute symptoms, cost of illness, dose-response function, Nepal.
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Pesticide Use in Nepal :  Understanding Health Costs
from Short-term Exposure

Kishor Atreya

1. Introduction

Human health is partly dependent on the environmental conditions people live in.  Occupational
health, which is well researched in developed countries, remains neglected in developing countries
(Nuwayhid, 2004) including Nepal (Poudel, et. al., 2005).  One issue of particular importance
is the use of pesticides on farms, which has a significant negative impact on farmers’ health (Rola
and Pingali, 1993; Antle and Pingali, 1995; Antle, Cole and Crissman, 1998; Ajayi, 2000).
Pesticide pollution not only affects human health, but also affects multiple other environmental
factors, such as soil, surface and ground water, crop productivity, micro and macro flora and
fauna, etc. (Pimental, 2005).  Despite such environmental and health effects, farm workers continue
to use pesticides in ever increasing quantities (Wilson and Tisdell, 2001).

Pesticide exposure can have chronic and acute impacts on human health.  Long-term, low-dose
exposure to pesticides is increasingly linked to human health effects such as immune-suppression,
hormone disruption, diminished intelligence, reproductive abnormalities, and cancer (Gupta, 2004).
Farm workers also experience day-to-day acute effects of pesticide poisoning, including symptoms
such as headache, dizziness, muscular twitching, skin irritation, respiratory discomfort, etc. (Antle
and Pingali, 1994; Dung and Dung, 1999; Murphy, et. al., 1999; Yassin, Abu Mourad and Safi,
2002; Maumbe and Swinton, 2003).  Several studies have attempted to value the effect of
pesticide exposure on human health.  A recent study (Pimental, 2005) estimated that the cost of
the public health impact of pesticide use in the US was around US$ 1140 million per year.
However, studies of health costs to farm workers and applicators in developing countries suggest
much lower numbers (see Table 1).

The average consumption of pesticides in Nepal (142 gm/ha) is still very low compared to
pesticides used in other countries such as India (500 gm/ha), Korea (6.6 kg/ha) and Japan (12
kg/ha) (Gupta, 2004).  However, market-oriented production and agricultural intensification are
leading farm workers to increase pesticide use at a rapid rate.  There is also inappropriate and
excessive use of chemical pesticides in some highly commercialized agriculture sectors.  In response,
Nepal’s National Agricultural Perspective Plan has emphasized integrated pest management (IPM)
to reduce pesticide use.  However, there is a dearth of empirical research on occupational health
(farmer’s health) in Nepal.  For example, a recent review paper by Poudel, et. al., (2005) found
only seven scientific studies on occupational health in Nepal from 1966 to 2004—all were un-
related to pesticides and farmers’ health.

Quantification and economic valuation of work place hazards to human health is important for
effective allocation of resources as well as formulation of new rules and regulations.  Furthermore,
the health impacts due to exposure to pesticide use have been omitted from analyses of returns to
pesticide use or in evaluation of specific agricultural policies or programs.  Does pesticide use
significantly affect farmers’ health in Nepal?  Do farmers incur any costs for treatment and avertive
actions taken to protect their health?  Are averting actions taken to reduce pesticides toxicity
sufficient?  What are the factors that significantly determine pesticide exposure and health
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damages? This paper attempts to answer the above questions in order to better inform pesticide
policy in Nepal.  The focus of the paper is restricted to acute health symptoms that appear during
or after the spray of pesticides on vegetable crops in an area near Kathmandu, Nepal.

In the following section, we describe the study area and sampling procedures.  This is followed
by a discussion of the survey and general characteristics of the sample.  We document the types
and frequency of pesticide application by the sample and their exposure to the local environmental
conditions.  The methodology section discusses the techniques used for estimating costs of health
damages due to pesticide pollution.  In the results section, we tabulate the incidence of acute
symptoms and defensive action, and identify the health costs of pesticide pollution.  In the concluding
section, the paper highlights issues of relevance to policy makers and other line agencies and
makes recommendations to redress the problem.

2. Study Area

The study area is located in the mid-hills of Nepal and is 40 km east of Kathmandu (see Figure
1).  The Araniko Highway that passes through the study area provides good access to the capital
and three other major cities.  For this study, Deubhumi Baluwa and Panchkhal Village Development
Committee (VDC) of Jikhu Khola Watershed (JKW) were selected.  These VDCs are the most
commercialized in the watershed.  Here farm families are switching from rice (Oryza sativa L.)
based cropping systems to vegetable based cropping.  Pujara and Khanal (2002) and Shrestha
and Neupane (2002) have reported significantly high use of pesticides in cash crops, such as
tomato (Lycopersicon esculentum Mill.) and potato (Solanum teberosum L.) in the JKW.
They also stress that farmers experienced several health problems given that they use no protective
measures.  The other cash crops grown at the time of the study were bitter gourd (momordica
charantia Linn.), cucumber (Cucumis sativus Linn.), cauliflower (Brassica oleracea var.
botrytis L.), cabbage (Brassica oleracea var. capitata L.), pepper (Capsicum spp.), brinjal
(Solanum melongena L.), lady’s fingers (Abelmoschus esculentus Moench), pumpkin
(Cucurbita moschata Duchesne), sponge gourd (Luffa aegyptiaca Mill.), radish (Raphanus
sativus L.), ribbed gourd (Luffa acutangula Roxb), cowpea (Vigna sinensis), field bean
(Dolichos lab lab L.), and snake gourd (Trichosanthes anguina L.).  Generally, pesticides in
the study area are used against pests such as brown plant hopper, fruit flies and diseases like the
late blight of potato and tomato.  Recent literature (Atreya, 2007 a, b, c) has shown that few
individuals are trained in integrated pest management (IPM) and adoption of safety precautions
and that pesticide hygiene is still minimal.  Thus, exposure to pesticides as well as the risks
farmers are facing consequently may be significant.  Among the reasons that make individuals opt
for pesticides in the area are the unwillingness to risk economic losses, ready availability of
pesticides in local markets, and the low share of pesticides on total produce.

3. Data

3.1 Sampling Procedures and Size

Each selected VDC is comprised of 9 wards (the smallest administrative unit).  We selected one
or two villages from these wards.  A ward may have more than one village. Therefore, one
village, with the highest number of households, was selected in those wards with less than 100
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households.  Two villages with the highest and the second highest household numbers were
selected from those wards which had more than 100 households.  We assume that villages with
the highest and the second highest number of households represent the population of the wards
and that, therefore, conclusions can be generalized for the whole VDC.  We selected a sample of
300 households proportionately and randomly from these villages.

We identified 2 pesticide users and one non-user from each of the sample households1 (3 members
where possible).  User A refers to a household member who sprays pesticide most of the time in
the selected household.  User B represents the second member of the same household who
sprays pesticides in the absence or instead of User A.  Non-User refers to a third member of the
household who never sprayed pesticides during the study period.

The sample is comprised of 295 of A Users, 148 of B Users, and 126 Non-Users.2  We scheduled
weekly interviews for 295 User As and 126 Non-Users.  If User B substituted for User A for
spraying operations, then User B was also interviewed.  Four User As and 4 Non-users were
not present during the single visit survey, and 61 Users Bs never sprayed pesticides even once
during the study period.  We excluded these respondents from the data analysis (see Figure 2).
User A (or user B) did not necessarily spray pesticides every week.  There were spraying as well
as non-spraying weeks.  However, each week, we interviewed User As (or User Bs) and all
non-users.  Therefore, we took the dose–response data obtained from either User As or User
Bs during spraying days as ‘treatment’ data.  Similarly, we took as data on the ‘control’ the
sample data obtained from either User As or User Bs during non-spraying days, plus data collected
weekly from all non-users.

3.2 Data Collection Methods

We collected the data for this study from individuals and households between January to July
2005 and developed the final questionnaire on the basis of a pilot survey of 25 households.  We
collected some of the data during a single visit and obtained the rest through repeated visits to
individuals on a weekly basis.

We collected data on household demography, personal characteristics, farm size and
characteristics, history of pesticide use, history of chronic illness, and property of the households
from single visits to households.  We gathered data on pesticide dose and exposure, appearance
of acute symptoms, use of safety gear, number of work-days lost due to health symptoms, and
type of medication through multiple visits.  Other data collected in weekly visits include medical
consultation fees, laboratory costs, medication costs, transport fare to/from health centers, dietary
expenses during treatment, and the number of family members involved in nursing the victims as
well as time spent by the family members.

1 In the study area, we could not find any household that had never sprayed pesticides before, and no
household assured us that they would not spray pesticide during the study period. Therefore, user and
non-user are different members of the same household.

2 There may be multiple users and non-users in a particular household, but data was obtained from a subset
of these individuals.  It was not possible to interview all family members due to time and budget con-
straints.
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We recruited fourteen local field level assistants3, with at least 10 years of education, to undertake
the weekly interviews.  All of them were experienced in household surveys and were involved in
more than two household surveys conducted by other organizations.  We provided them with
three days of intensive training for this study.  The research team monitored the field staff initially
weekly for three months, and monthly for the rest of the period.  We established a field office at
the center of the study area and held bimonthly meetings (1st and 16th of each month) that included
all field staff and the research team.  During these bimonthly meetings, we checked and corrected
where necessary the survey instruments for missing data, codes, spellings, and so on.  We used
these meetings to further train field staff.  After completing weekly interviews, five field-level staff
(the best among the 14-member) conducted the single visit survey.  They received two days of
training for the survey instrument.

The total data set contains 12721 observations of which 28.6% were spraying episodes while
the rest are non-spraying episodes.  User As sprayed pesticides 12 times (ranged from 1 to 31
times) while User Bs sprayed 5 times (ranged from 1 to 17 times) during the 31 weeks of the
study period.  A household, on average, sprayed pesticides 13 times during the study period.

We provide the general characteristics of the study population in Table 2.  There were 291 User
As, 87 User Bs, and 122 Non-users.  Both males and females sprayed pesticides.  Males
accounted for 86% of   A and 61% of B users.  Females dominated the ‘control’ group.  Pesticides
applicators were younger.  Even though the formal education was low in all groups, users were
better educated.  Only eight percent of the User As had taken IPM training.  It was only four
percent for the other two groups.

Time allocated for farm activities varies during pesticide spraying and non-spraying days.  User
As had worked 2.83 hours per day on their farms during the spraying days (spraying pesticides
accounted 1.87 hours) under the average maximum temperature of 27.3oC while during non-
spraying days, the same User As worked 3.70 hours (nearly 31% more) with a higher maximum
temperature of 29.7oC.  Similarly, User Bs were also exposed to 26.7oC for 3.08 hours during
spraying days (spraying pesticides accounted for 1.8 hours), while during non-spraying days
they were exposed to the same number of hours (3.0 hours) with a higher daily maximum
temperature (30oC).  For non-users, the exposure to 28.8oC was for 2.16 hours per day during
the study period.  We found that most of the spray operations had been done when the days
were cooler.  It means that higher the day temperature is, the lower the spray operations are.

The pesticides found in the study area can be classified into five World Health Organization
hazard categories: Extremely hazardous (Class Ia), Highly hazardous (Class Ib), Moderately
hazardous (Class II), Slightly hazardous (Class III), and Unlikely to present acute hazard in
normal use (Class U) (WHO/PCS, 2001).  Different kinds of insecticides, such as parathion-
methyl and phorate of class Ia; dichlorvos and methomyl of class Ib; cypermethrin, deltamethrin,
fenvelerate, endosulfan, quinalphos, chlorpyrifos, and dimethoate of class II; and fungicides like
copperoxychloride, metalaxyl and dinacap of class III and mancozeb; and carbendazim of class
U with various concentrations were used in the study area.  Almost all spray operations contained
mancozeb, either mixed or alone, at an average concentration of 4.26 gm/l.

3 Five of them worked for ICIMOD/PARDYP as data recorders, especially weather and hydrological data
(daily temperature, humidity, and rainfall and river discharge).
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4. Methodology

The basis of the formal models that assess the health costs of pollution is that pollution results in
morbidity, which in turn affects individual’s welfare (utility).  These effects are a result of discomfort
and pain, loss of productive time, and expenditures on medical and avertive actions.  In pesticide
exposure studies, economists often model individual behavior as utility maximizing, subject to a
health production function.  Individuals who are exposed to pollution are assumed to choose
optimal amounts of avertive and mitigating actions to reduce health impacts (Freeman, 1993).

While a formal model of a utility maximizing individual or a health production function is not
developed in this paper, the approach used in estimating health costs is similar to these.  Pesticide
exposure in Nepal reduces people’s wellbeing because of sickness, wage loss and medical
expenses.  In this study, we use the cost of illness and avertive cost approach to assess the
pesticide health costs of pollution.  Cost of illness is defined as lost productivity due to sickness
plus the cost of medical care resulting from sickness (Freeman, 1993).  Avertive costs are defensive
expenditures taken prior to spraying pesticides to minimize health costs.  The paper builds on the
work of Dasgupta (2004) who estimated the probability of sickness from diarrhea to households
in Delhi and identified the costs to the household from sickness.  Other studies that have informed
the methodology we use are pesticide specific studies such as those by Antle and Pingali (1994),
Wilson (1998) and Dung and Dung (1999).

4.1 Dose-Response and Avertive Action Functions

In this study, individuals exposed to pesticides have a probability y
1
 of falling sick.  The probability

of sickness is a function of exposure and individual health stock, education, and other household
characteristics.  Individuals also take avertive actions to reduce the effects of pesticide exposure.
In the health production function literature this is referred to as a demand for avertive actions.  In
our study, we estimated the probability of undertaking avertive actions using a probit model
which is also a function of pesticide exposure and individual and household characteristics.

The econometric model specification used in the dose-response and avertive demand
analyses is:

111
*
1 xy ε+β=  , 1y = 1 if *

1y  >0, 0 otherwise ............................ (1)

222
*
2 xy ε+β=  , 2y = 1 if *

2y  >0, 0 otherwise .......................... (2)

E (ε
1
) = E (ε

2
) = 0

Var (ε
1
) = σ2

1
, Var (ε

2
) = σ2

2

The binary dependent variables y
1
 is the probability of falling sick.  It indicates whether or not an

individual experiences a set of acute symptoms during and or within 48 hours of pesticides
application.  y

2
 is the probability of an individuals taking avertive action while using pesticides.  It

indicates whether or not an individual adopts avertive actions such as wearing a mask, gloves,
boots and long-sleeved shirts or pants during pesticides application.  x

1
 and x

2
 are the vector of

explanatory variables that may affect these probabilities.  The variables reflect individual
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characteristics, pesticide dose and level of exposure, and environmental factors.  We present
definitions of independent variables and the way they are expected to affect the probability of
sickness and probability of taking avertive actions in Tables 3 and 4 respectively.  We selected
these independent variables based on our understanding of the literature.  ε

1, 
ε

2
 are random

errors.

Equation 1 and 2 can be rewritten as the dose response and avertive action equation:

187

654321

εββ
ββββββ

+++
+++++=

BMIIPM

EDUAGEMIXTEMPFUNGIINSECTyi
....... (3)

where i = 1, 2

INSECT and FUNGI refer to dose of insecticide and fungicide used.  Pesticide dose is an
important variable in this analysis.  It is defined as concentrations (ml or gm/l) multiplied by spray
duration (h/day), calculated as

∫= 2

1

)(
t

t n dttCD .................................................................................................  (4)

Where, dose (D) is the magnitude of exposure, C
n
(t) is the exposure concentration as a function

of time (t), t
2
-t

1
 being the spray duration (defined as time interval of interest for assessment

purposes during which exposure occurs, either continuously or intermittently).  Thus, INSECT
and FUNGI are the magnitude of exposure to insecticides and fungicides.  Greater exposure to
either insecticides or fungicides is expected to increase the adoption of avertive activities, and
also increase the likelihood of acute symptoms.

TEMP refers to the average weekly maximum temperature, which would decrease the adoption
of avertive activities due to discomfort, and would increase the occurrence of symptoms.  MIX
is a dummy variable that reflects whether or not more than one pesticide has been mixed together.
In developing countries, pesticide sprayers mix more than one pesticide (insecticides are mixed
with fungicides in most cases) to increase toxicity and to minimize crop losses.  The mixing habits
(MIX) of individuals would both increase the adoption of avertive activities due to increased
toxicity of the mixture as well as increase the likelihood of occurrence of symptoms.

Older people have better experience in farm activities, especially pesticide spraying.  This may
enhance the adoption of avertive activities and reduce the occurrence of symptoms.  Thus, age of
the individual (AGE) was incorporated in the models.

Educated individuals prefer to adopt higher avertive activities to minimize the health risk because
of their better knowledge of pesticide toxicity. Moreover, education opens up other employment
avenues beside agriculture.  Thus, education of the individual in terms of years of education
(EDU) is likely to be positively related to the adoption of avertive activities and negatively related
to the occurrence of pesticide-related acute symptoms.
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Individuals trained in any IPM prefer to take more avertive actions than those without such
training while spraying toxic pesticides.  Arguably, IPM trained people use less pesticide doses
and prefer to go for alternative pesticides which are thought to be environmentally safe, like
green pesticides.  It is, therefore, assumed that IPM is positively related to the adoption of
avertive activities, and negatively related to the occurrence of symptoms.  IPM is measured as
dummy, if an individual had prior training = 1, 0 otherwise.

The occurrence of acute symptoms depends on individual nutritional status.  The Body Mass
Index (BMI), defined by weight/square height, is a proxy for nutritional status.  It is, therefore,
included in the model.

4.2 Estimating Health Costs

The cost of illness (COI) and avertive actions approach is used for valuing health damages due to
pesticide exposure.  COI is comprised of cost of treatment and productivity losses.  To this, we
add cost of averting behavior.  These costs, however, do not capture discomfort, pain and
suffering due to illness.  The costs can be interpreted as an indicator of the minimum willingness
to pay for reduced health risk from periodic exposure to pesticides.

The models described above are used for estimating health costs of pesticide exposure.  From
equation 1 in its empirical specification we can obtain estimates of the predicted probability of
illness

 
for users (P

u
) and non-users (P

c
).  Similarly, Equation 2 estimates the predicted probability

of taking avertive actions, P
a
.

Thus, the average health costs of exposure are estimated as:

C
u
 = P

u 
* COI

u 
+ P

a 
* AC for users, and .......................................................  (5)

C
c
 = P

c 
* COI

c 
for non-users ........................................................................   (6)

Where,

C
u
 and C

c
 are the total predicted health costs of exposure to pesticide users and non-users

respectively.  COI
u
 and COI

c
 are the average annual treatment costs and productivity losses for

users and non-users, respectively, and AC is the average costs of avertive actions for the sampled
population.

Finally, actual health costs (HC) for an individual due to exposure to pesticides is calculated as:

 HC = C
u
 - C

c
................................................................................................................................................... (7)

It is useful to explain why non-users, i.e., individuals who do not spray pesticides, may have
positive probabilities of sickness and health costs, C

c
.  Non-users experience some of the same

symptoms as users because they are fairly common (headaches, for example) and reflect an
unrelated malaise, such as long hours of work outdoors.  Thus, we think it is important to
acknowledge these symptoms and costs and then subtract them from the costs experienced by
users in order to isolate the correct health costs of pesticide exposure.
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We estimated COI
 
from the data collected on costs incurred by individuals, such as consultation

fee, hospitalization cost, laboratory cost, medication cost, travel cost to and from clinics, time
spent in traveling, dietary expenses resulting from illness, work efficiency loss in farm, loss of
workdays in farm and time spent by family member (s) in assisting or seeking treatment for the
victim.

Averting costs (AC) include costs associated with precautions taken to reduce direct exposure
to pesticides, such as masks, handkerchiefs, long-sleeved shirts/pants, sprayers, etc.  These
averting equipments may also have multiple uses, but each individual was asked whether they
have separated such measures used especially for spraying pesticides.  Hence, averting equipments
purchased specifically for the use and handling of pesticides only were considered.  For example,
a long-sleeved shirt may have multiple uses, but if an individual had separated it for spraying
pesticides, it was considered for estimating costs.   These averting equipment were annualized
with the expected life span.

The effect of exposure changes on health costs can be decomposed into the effects of increased
chemical concentration and increase in the hours of application.  Marginal effects of pesticide
concentration and hours of application to health costs were estimated as follows:

∆ Health costs / ∆  insecticide concentration = 
icη * COI

u
 + 

icψ * AC .................... (8)

∆  Health costs / ∆  fungicide concentration = 
fcη * COI

u
 + 

fcψ * AC.................... (9)

∆  Health costs / ∆  hours of insecticides application = 
ihη * COI

u
 + 

ihψ * AC ...... (10)

∆  Health costs / ∆  hours of fungicides application = 
fhη * COI

u
 + 

fhψ * AC......  (11)

Where,

icη ∆ prob. sickness / ∆  insecticide concentration evaluated at mean hours of exposure,

fcη ∆  prob. sickness / ∆  fungicide concentration evaluated at mean hours of exposure,

ihη  ∆  prob. sickness / ∆  hours of spray evaluated at mean concentration of insecticides,

ihη  ∆  prob. sickness / ∆  hours of spray evaluated at mean concentration of fungicides,

icψ  ∆  prob. avertive action / ∆  insecticide concentration evaluated at mean hours of exposure,

fcψ   prob. avertive action / ∆  fungicide concentration evaluated at mean hours of exposure,

ihη ∆  prob. avertive action / ∆  hours of spray evaluated at mean concentration of insecticides,

and

fhη ∆  prob. avertive action / ∆  hours of spray evaluated at mean concentration of fungicides.
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5. Results and Discussions

5.1 Incidence of Acute Symptoms

Both users A and B have a higher probability of contracting almost all documented acute symptoms
when they spray pesticides compared to days when they do not spray (see Table 5).  Interestingly,
users B who were the substitute sprayers for user A in the same household had a higher chance
of having acute symptoms relative to users A.  In every thousand exposure to pesticides, users A
experienced headaches 193 times, muscle twitching/pain 158 times, chapped hand 149 times,
excessive sweating 136 times and eye irritation 81 times.  Whereas user B had these acute
symptoms 282 times, 256 times, 239 times, 144 times, and 115 times respectively.  We think
that this data shows that user B is more aware of acute symptoms than user A.  It also suggests
that either Users A have acquired more tolerance to pesticide pollution or underestimate symptoms
because they think that the symptoms are a “normal” part of their work.

5.2 Avertive Actions

Individuals do not take enough protective measures during spraying against pesticide toxicity to
reduce health hazards.  They generally prefer to wear only long-sleeved shirts (68 percent of
total events) and long pants (58 percent).  They did not use other averting equipment, which are
recommended and thought to be effective, on many occasions.  Users wore caps (15 percent),
handkerchief (14 percent), shoes (11 percent) and masks (10 percent).  Spraying operations
were undertaken without any protective equipment 15 percent of the time (see Table 6).  The
low levels for adopting safety gear while spraying pesticides were not surprising.  Our results are
consistent with the findings of other studies done in developing countries (Wilson, 1998; Gomes,
Lloyd and Revitt, 1999; Murphy, et. al., 1999; Yassin, Abu Mourad and Safi, 2002; Salameh,
et. al., 2004).  These studies suggest that the low level of awareness and education, the humid
hot environment, low income and discomfort are the main factors for not adopting such protective
gear while using pesticides in developing countries.

5.3 Dose – Response and Avertive Actions Estimations

We regressed the response to pesticides use, i.e., whether or not an individual experienced
symptoms during the study period, on the magnitude of exposure to pesticides, exposure
environment, and personal characteristics.  Defensive or avertive behavior is a choice variable
that the individual chooses based on a variety of factors.  Thus, we ran a second regression with
the probability of adoption of defensive actions on the left hand side and the same explanatory
variables.

We give the summary statistics of the independent variables used in the dose-response and
avertive actions functions in Table 7.  We provide the dose-response and avertive action estimations
in Table 8 and Table 9 respectively.  In both regressions, dependent variables are binary (if
outcome occurs = 1, 0 otherwise).
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In the dose-response function, except IPM, other explanatory variables are statistically significant
at the 1% level.  Exposure to insecticides (INSECT) and fungicides (FUNGI) positively determine
the probability of occurrence of symptoms as we expected.  Thus, this result empirically shows
that the use of insecticides and fungicides affect farmer health in Nepal.  A one unit rise in the
INSECT and FUNGI increases the probability of occurrence of symptoms by 3.8 and 1.4 %
respectively.  Identification of chronic and long-term health impacts, which also exist, is beyond
the scope of this paper.

The expected sign for the coefficient of the maximum average weekly temperature (TEMP) is
negative.  This is because of the higher rate of pesticide application during cooler days.4  Mixing
of pesticides (MIX) has a positive impact on the likelihood of symptoms.  Mixing two or more
pesticides in a container before application to the field is believed to be more potent in killing
pests and is thus common in developing countries (Kishi, et. al., 1995; Cole, et. al., 2000;
Yassin, Abu Mourad and Safi, 2002; Lu,  2005).

AGE of individual negatively affects the probability of occurrence of symptoms.  Age can be
taken as proxy of experience on the farm.  Experience in farm activities increases defensive
actions and reduces the probability of occurrence of symptoms due to pesticide exposure.  Formal
education of an individual (EDU) also decreases the probability of acute symptoms.  This is
because educated individuals may have a better knowledge of safe handling practices.

The expected sign for IPM is positive; however the coefficient itself is insignificant.  The adoption
of IPM5 technology is a choice between two alternatives: the traditional practices that demand
high use of pesticides and IPM technology, which reduces pesticides use but may also contribute
to a decline in productivity.  Our results may reflect the possibility that individuals may not use
their IPM training, even if they have had some.  In Nepal, where people are very poor, IPM
training may not necessarily enable individuals to reduce pesticide use significantly on their crops.

Health and nutritional status (BMI) is negatively correlated with the incidence of acute symptoms,
which is consistent with results from Dung and Dung (1999) and Antle and Pingali (1994).

5.4 Health Costs of Pesticide Use

The dose-response function allows us to determine the probability of a user (both users and non-
users) being sick due to pesticide use and exposure.  Thus, the predicted probability of an
outcome (the probability of observing pesticide-related acute symptoms) is estimated for users
and non-users.  The average predicted probability of being sick due to pesticide use for user is
0.41 while that for non-users is 0.18.  Similarly, the avertive action model allows us to determine
the probability of an individual adopting avertive action while spraying pesticides.  The average
predicated probability of taking avertive actions is 0.52 (see Table 10).

4 Late blight of potato caused by a fungus, Phytophthora infestans, is the most important disease in the
study area, against which farmers spray pesticides.  The high relative humidity and low day temperature
strongly favor its germination, growth and infection (Singh, 1990). This may be another reason for spray-
ing more pesticides in cooler days.

5 The slow rate of IPM adoption is well described by Trumble (1998).  Feder, Murgai and Quizon (2003), who
also evaluated the impact of farmer field school in terms of improved yields and reduced pesticide use,
found no evidence of expected environmental benefits of the program.
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We use these predicted probabilities to obtain the health costs of pesticide use.  We also calculate
the average costs of treatment and defensive actions for an individual for the sample.  We assume
that the cost of defensive activities for non-users is zero.6

In the case of this particular sample, the average annual costs associated with health effects and
productivity losses from pesticide exposure are NPR 172.54 for users and NPR 105.34 for
non-users for similar illnesses. The annual average cost of avertive activities for users is NPR
175.

Average health costs of pesticide use are calculated for users and non-users by multiplying the
above health cost numbers with the predicted probability of falling sick and taking avertive actions
(see Equations 5 and 6).  The total health cost per year of exposure to pesticide pollution is
estimated to be NPR 162.34 for a pesticide user; for a non-user this is NPR 18.62.  Following
Equation (7), the difference between these values is NPR 143.72 (US $ 2.05), which is the
actual annual cost of pesticide use and exposure for a user individual.  It is important to deduct
costs of non-users from costs for users because some of the health symptoms are very similar
and may arise from other factors.  With regard to gender, health costs of pesticide use for a man
were estimated to be NPR 151 per year and that for a woman at NPR 102 per year (see Table
11).

The estimated pesticide-induced health costs constitute 0.2 percent of annual household
expenditure, 13.16 percent of annual household expenditure on pesticides, and 10.32 percent of
the annual household expenditure on health care and services due to chronic and non-chronic
illnesses, injuries and birth deliveries (Hotchkiss, et. al., 1998).  The low proportion of pesticide
health costs makes households underestimate health costs in their farm production decisions.
This could be a major reason why human health issues arising from pesticide use are given little
attention in household decisions, which may further accelerate the use of pesticides in their farms.

In order to estimate the total health costs from acute exposure to pesticides in the study area, we
make the assumption that all households in the study area apply pesticides and two members in
each household generally undertake this operation.  We estimate that the total annual pesticide
related health costs for the study area are NPR 1,105,782 (US $ 15,797) per year.  Each VDC
gets developmental and administrative funds from the government of NPR 10 lakh per year.
Thus, the aggregate health cost is equivalent to 55% of the annual development and administrative
budgets of these two VDCs.

We list the impacts of increased chemical concentration and hours of application in Table 12.  A
one unit rise in insecticide concentration (1 ml/l) would increase sickness by 6.8 percent, avertive
action by 10 percent and health costs by nearly NPR 30, which was evaluated at mean hours of
pesticide application.  Similarly, one unit rise in fungicide concentration would result in increased
sickness by 2.4 percent and health costs by NPR 13.17.  We also observed that a unit increase
in fungicide application hours would result in more health costs than a unit increase in insecticides
concentration.  The sensitivity analysis shows that sickness, avertive actions and health costs are
invariant to increase in fungicide concentration and insecticide application hours, but they

6 Non-users did not use masks, gloves, aprons, or any other defensive measure during the study period
even if they worked on the farm and were exposed in some fashion to pesticide sprays.
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significantly increase with insecticide concentration and hours of fungicide applications.  The
main fungicide used in the region is mancozeb, which is considered to be relatively non-toxic.
Hence, increases in the concentration of fungicides do not seem to matter, but the build up that
occurs by increasing the hours of exposure does have an effect. Table 13 shows that a 10
percent increase in fungicide application hours leads to increased sickness by 6 percent, averting
action by 13 percent and health costs by NPR 34, which are comparable to the increase in
insecticide concentration by the same amount.

The estimated costs of pesticide use in Nepal are at the lower end when compared to costs
estimated from pesticide exposure in other studies (see Table 1) from India (Devi, 2007), Sri
Lanka (Wilson, 1998), Vietnam (Dung and Dung, 1999), Mali (Ajayi, et. al., 2002), Ecuador
(Cole, Carpio and Leon, 2000; Yanggen, et. al., 2003) and United States (Pimental, 2005).
For example, Devi (2007) finds that in India the annual cost of illness per applicator is around US
$36.  However, the costs estimated here are consistent with estimates from studies in Africa
undertaken by Ajayi (2000) and Maumbe and Swinton (2003).

The low costs of pesticide exposure in this study could be the domination of mancozeb in spray
events.  Out of 3637 spray events during the seven-month study period, mancozeb was sprayed
3464 times either alone or mixed with other pesticides (Atreya, 2007c).  Mancozeb is relatively
non-hazardous.  Further, the average amount of pesticide used in Nepal is lower than in many
other countries.  It is also clear that individuals treat symptoms as unrelated to pesticide exposure
and as part of their agricultural life, thus   underestimating their effects.  Moreover, acute symptoms
do not last for long periods.  And, lastly, people use locally made alcohol to get rid of these
symptoms and this may lead to a certain reluctance to discuss symptoms with outsiders.

It is also useful to note that most of the other studies considered a recall period of either one year
or a crop season (Atreya, 2005; Wilson, 1998; Dung and Dung, 1999) and also measured long-
term chronic illness (Wilson, 1998; Maumbe and Swinton, 2003) and intentional pesticide
poisoning (Pimental, 2005; Cole, Carpio and Leon,. 2000).  A longer recall period distorts
assessment of costs.  For example, in the pilot study, estimated costs due to pesticide use based
on a one-year recall period produced a higher value of NPR 1261 per household per year
(Atreya, 2005).  The present study did not value long-term chronic illness, pain and discomfort.
Nor did it value intentional pesticide poisoning.

A final qualification is that our cost estimates are based on self-reported symptoms, which may
not fully reflect health changes.  A study on pesticide exposure in Vietnam by Dasgupta, et. al.
(2005) shows, for example, that self-reported symptoms have weak associations with actual
poisoning.

6. Conclusions and Policy Recommendations

This is the first empirical study of its kind in Nepal to focus on pesticides use and its health costs
in rural Nepal.  The study shows that the use of insecticides and fungicides has a significant
negative effect on human health.
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This empirical investigation provides some policy inputs for planners at local, district and national
levels. IPM training may not necessarily reduce health damages even though it increases averting
activities significantly.  This suggests that agricultural and environmental planners need to review
the implementing strategies of the IPM program from a health perspective. Avertive measures
like wearing masks and long-sleeved clothes do not help individuals reduce pesticide damage to
health.  Furthermore, only a small percentage of individuals adopt such avertive gear. Mixing
more types of pesticides increases health damages.  Awareness programs about safe handling
and management of pesticide use would help reduce health symptoms.

The cost of illness estimated in this study area is an indicator of the hazards pesticides pose to
individuals.  The study shows that on average a person who is involved in pesticide application
and is exposed to pesticides on average for 1.8 hours during spraying days bears an annual cost
of NPR 143.72.  This cost is indeed small, which is the reason why we see very limited avertive
action being undertaken by individuals.  Due to the low costs, when a farmer is faced with a
choice between human health costs (indirect) associated with pesticides use and increases in
farm production costs (direct), s/he tends to give greater priority to pesticides technology.
However, this cost is nearly 8 times higher for the user population compared to the non-user
population in the same household.  The total annual costs of illness plus costs of avertive action
for the population of the Panchkhal and Baluwa VDCs are estimated to be NPR 1,105,782 (US
$ 15,797).  This is assumed to be the lower bound when it comes to costs of pesticide pollution.

Pesticide pollution not only affects short-run health effects, but can also result in chronic diseases
such as cancer.  Pesticides also cause deaths of domestic animals, loss of natural pests, increase
pesticide resistance, crop losses, bird and fishery losses, and surface and sub-surface water
contamination.  Therefore, the cost of pesticide pollution for the society is likely to be significantly
higher than the cost estimated here.  The low level of awareness on pesticides and health costs
may lead to sub-optimal decision-making on the use of pesticides (Ajayi, 2000).  However, the
estimated cost here could be taken as reason to launch programs that focuse on pesticide use
and safety measures.
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TABLES

Table 1: Environmental and Social Cost of Pesticide use in Different Countries

Ecuador The immediate costs of a typical intoxication (medical attention, Yanggen, et. al., (2003)
medicines, days of recuperation, etc.) equaled the value of
11 days of lost wages.

Ecuador The median cost associated with pesticide poisoning was Cole, et. al., (2000)
US$ 26.51/case/worker

India The average annual welfare loss toof an applicator from pesticide Devi (2007)
exposure amounts to US$ 36a(US$ 36).

Mali Annual indirect and external cost of pesticide use = US$10 million Ajayi, et. al., (2002)

Philippines 61% higher health costs for farmers exposed to pesticides than Pingali, et. al., (1995)
those not exposed

Sri Lanka Ill health cost to farmers from pesticide exposure = Wilson (1998)
income of 10 weeks

USA Total estimated annual environmental and social costs from Pimental (2005)
pesticides in the United States = US$ 9645 million
(public health impact = US$ 1140 million)

Vietnam Health cost of over US $ 6.92 per individual per rice season Dung & Dung (1999)

West Africa The economic value of the pesticide-related health costs Ajayi (2000)
equal US$ 3.92 per household per season in the case of
cotton-rice systems

Zimbabwe Cotton growers incur a mean of US $ 4.73 in Sanyati and $ 8.31 in Maumbe & Swinton
Chipinge on pesticide related direct and indirect acute (2003)
health effects.
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Table 2: Descriptive Statistics of the Respondents*

Category % of Male Age(Years) Education (Years) IPM Training (%)

Users A (N = 291) 0.86 (0.35) 33.6 (10.64) 5.5     (4.06) 8.2

Users B (N = 87) 0.61 (0.49) 30.0 (11.94) 4.8    (4.67) 3.4

Non-users (N = 122) 0.24 (0.43) 35.2(13.95) 2.9    (4.08) 4.1

* Figures in parenthesis are standard deviations.

Table 3: Explanatory Variables and Hypothesis for Dose-response Function

Variable Expected sign Description

INSECT + Exposure to insecticides (ml/l/h)

FUNGI + Exposure to fungicides (g/l/h)

TEMP + Average weekly maximum temperature (oC)

MIX + Dummy for mixing of pesticides (if mixed = 1, 0 otherwise)

AGE - Age of the individual (years)

EDU - Formal education of the individual (Years of schooling)

IPM - Dummy for IPM training (if trained = 1, 0 otherwise)

BMI ? Body Mass Index (wt/ht2)

Table 4: Explanatory Variables and Hypothesis for Avertive Function

Variable Expected sign Description

INSECT + Exposure to insecticides (ml/l/h)

FUNGI + Exposure to fungicides (g/l/h)

TEMP - Average weekly maximum temperature (oC)

MIX + Dummy for mixing of pesticides (if mixed = 1, 0 otherwise)

AGE + Age of the individual (years)

EDU + Formal education of the individual (Years of schooling)

IPM + Dummy for IPM training (if trained = 1, 0 otherwise)

BMI ? Body mass index (wt/ht2)
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1 Headache 193 24 282 37 68

2 Muscle Twitching/Pain 158 55 256 75 96

3 Chapped Hands 149 43 239 56 89

4 Excessive Sweating 136 57 144 51 96

5 Eye Irritation 81 4 115 5 14

6 Skin Irritation/Burn 79 1 110 2 2

7 Weakness 61 17 89 19 36

8 Respiratory Depression 50 4 104 12 13

9 Chest Pain 37 11 104 23 36

10 Throat Discomfort 30 8 75 7 24

Table 6: Use of Protective Equipment during Pesticides Spraying

Protective Equipments % of Total Spraying Episodes*

Long-sleeved Shirt 67.72

Full Pants 58.26

Cap 15.34

Handkerchief 14.19

Shoes 11.22

Mask 9.76

Gloves 1.48

Spectacle 0.47

Boots 0.11

Others (Plastic, Shawl) 4.12

Without any Protective Equipments 14.8

* Total % is >100 since an individual may use more than one protective gears in a spray

Table 5: Frequency of Acute Symptoms (Incidence per 1000 Spray)

Non-
users

Non-
spraying

Days

Spraying
Days

Non-
spraying

Days

Spraying
Days

Users A Users B

SN Symptoms
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Table 7: Summary Statistics of the Variables Used in the Dose-response and Avertive
Functions

Variable Mean Std. Dev. Min Max

INSECT 0.22 0.9559 0 20.74

FUNGI 2.37 5.4594 0 67

TEMP 28.75 5.0893 18.10 36.10

MIX 0.18 0.3860 0 1

AGE 33.98 11.7902 10 71

EDU 4.74 4.2491 0 14

IPM 0.06 0.2435 0 1

BMI 19.90 3.12 12.92 38.45

Table 8: Dose-response Function+

Variables Coefficient Marginal Effect T-Statistic

INSECT 0.1269(0.0142) 0.0380(0.0043) 8.92***

FUNGI 0.0452(0.0029) 0.0135(0.0008) 15.58***

TEMP -0.0509(0.0026) -0.0152(0.0007) -19.08***

MIX 0.2506(0.0408) 0.0794(0.0135) 6.14***

AGE -0.0049(0.0012) -0.0015(0.0004) -4.10***

EDU -0.0322(0.0034) -0.0096(0.0010) -9.47***

IPM 0.0947(0.0522) 0.0292(0.0165) 1.81

BMI -0.0271(0.0043) -0.0081(0.0012) -6.27***

CONSTANT 1.3772(0.1287) - 10.70***

+ Figure in parenthesis are standard errorLog likelihood = -6252.96, Pseudo R2 = 0.119, No of
observation = 12721

*** Indicates significant at 1% level

Table 7: Summary Statistics of the Variables Used in the Dose-response and Avertive
Functions

Variable Mean Std. Dev. Min Max

INSECT 0.22 0.9559 0 20.74

FUNGI 2.37 5.4594 0 67

TEMP 28.75 5.0893 18.10 36.10

MIX 0.18 0.3860 0 1

AGE 33.98 11.7902 10 71

EDU 4.74 4.2491 0 14

IPM 0.06 0.2435 0 1

BMI 19.90 3.12 12.92 38.45
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Table 9: Avertive Action Function

Variables Coefficient Marginal Effect T-TEST

INSECT 0.2203(0.0232) 0.0563(0.0060) 9.49***

FUNGI 0.1116(0.0037) 0.0285(0.0010) 30.37***

TEMP -0.0076(0.0034) -0.0019(0.0008) -2.21*

MIX 1.4770(0.0455) 0.4914(0.0159) 32.44***

AGE 0.0072(0.0015) 0.0018(0.0003) 4.65***

EDU 0.0040(0.0044) 0.0010(0.0011) 0.93

IPM 0.3190(0.0615) 0.0918(0.0196) 5.19***

BMI -0.0052(0.0054) -0.0013(0.0013) -0.97

CONSTANT -1.4900(0.1636) - -9.11***

+ Figures in parenthesis are standard errorLog likelihood = -3582.29, Pseudo R2 = 0.483, No of
observation = 12721

* and *** indicate significance at 10% and 1% level respectively

Table 10: Annual Costs of Illness for Users and Non-users due to Pesticide Exposure

Predicted probability of a user being sick (P
u
) 0.4116

Predicted probability of a non-user being sick (P
c
) 0.1768

Predicted probability of taking avertive actions (P
a
) 0.5218

Average costs of treatment for users (COI
u
) 172.54 (Rs)

Average costs of treatment for non-users (COI
c
) 105.34 (Rs)

Average costs of avertive actions for users (AC) 175 (Rs)

Average costs of exposure for users: C
u
 = P

u
*COI

u
 + P

a
*AC 162.34 (Rs)

Average costs of exposure for non-users:C
c
 = P

c
*COI

c
18.62(Rs)

Actual health costs for a user to pesticide exposure HC = C
u
 - C

c
143.72 (Rs)

Total annual health costs for the study area (3847 households), 11,05,782 (Rs)
assuming that at least two members in a household spray pesticides
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Table 11: Estimation of Cost-of-illness by Gender

Male Female

Predicted probability of a user being sick 0.4027 0.4306

Predicted probability of a non-user being sick 0.171 0.1882

Predicted probability of taking avertive actions 0.5089 0.5494

Average costs of treatment for users (Rs) 178 156

Average costs of treatment for non-users (Rs) 78.78 172.47

Average costs of avertive actions for users (Rs) 180.16 122

Average costs of exposure for users (Rs) 164 134

Average costs of exposure for non-users (Rs) 13.47 32.43

Actual health costs for a user to pesticide exposure  (Rs) 151 102

Table 12: Change in Health Costs from Changes in Concentrations and Hours of
Application

Results

Marginal effect of insecticide exposure to sickness 0.0380

Marginal effect of fungicide exposure to sickness 0.0135

Mean insecticide concentration (ml/l) 0.52

Mean fungicide concentration (g/l) 4.26

Mean hours of exposure (h/day) 1.80

Marginal effect of insecticide exposure to avertive action 0.0563

Marginal effect of fungicide exposure to avertive action 0.0285

Costs of treatment (Rs) 172.54

Costs of avertive action (Rs) 175

∆ prob. sickness / ∆ insecticide concentration evaluated at mean hours of exposure 0.0684

∆ prob. sickness / ∆ fungicide concentration evaluated at mean hours of exposure 0.0243

∆ prob. sickness / ∆ hours of spray evaluated at mean concentration of insecticides 0.0198

∆ prob. sickness / ∆ hours of spray evaluated at mean concentration of fungicides 0.0575

∆ prob. avertive action / ∆ insecticide concentration evaluated at mean hours of exposure 0.1013

∆ prob. avertive action / ∆ fungicide concentration evaluated at mean hours of exposure 0.0513

∆ prob. avertive action / ∆ hours of spray evaluated at mean concentration of insecticides 0.0293

∆ prob. avertive action / ∆ hours of spray evaluated at mean concentration of fungicides 0.1214

∆ health costs / ∆ insecticide concentration Rs. 29.53

∆ health costs / ∆ fungicide concentration Rs. 13.17

∆ health costs / ∆ hours of insecticides application Rs. 8.53

∆ health costs / ∆ hours of fungicides application Rs. 31.17
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Table 13: Policy Simulation

10% 0.0752 0.0267 0.0217 0.0633

20% 0.0821 0.0292 0.0237 0.0690

50% 0.1026 0.0365 0.0296 0.0863

100% 0.1368 0.0486 0.0395 0.1150

Probability of Avertive Action

10% 0.1115 0.0564 0.0322 0.1336

20% 0.1216 0.0616 0.0351 0.1457

30% 0.1520 0.0770 0.0439 0.1821

100% 0.2027 0.1026 0.0586 0.2428

Health Costs

10% 32.49 14.49 9.39 34.29

20% 35.44 15.80 10.24 37.40

30% 44.30 19.76 12.80 46.75

100% 59.07 26.34 17.07 62.34

Percentage
Increase in

Policy Variables Insecticide Fungicide Insecticide Fungicide

Probability of Sickness

Concentration Hour of Spray
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FIGURES

Figure 1: Location of the Study Area
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Figure 2: Scheme of the Important Steps used in the Households and Individual
Sampling

Panchkhal VDC

• National highway passes through

• More intensified

• Better market for produce

• Better access to hospitals, pesticide
dealers, and government agricultural
offices

Deubhumi Baluwa VDC

• Less intensified comparatively

• Market problems, needs to go elsewhere

Each VDCs has 9 wards (the smallest administrative unit)

1 2 3 4 5 6 7 8 9

In wards with < 100 households, one village with highest household
number was selected. Similarly in wards with > 100 households, two
villages with the highest and second highest households were
selected.

Proportionate random sampling results in

• 189 households from Panchkhal VDC
• 111 households from Devbhumi Baluwa VDC

Total households = 300

We list out two pesticide users and one non-user from these households if applicable.  “User
A” was the member who sprays pesticide most of the time; “User B” was the member who
sprays pesticides in the absence or instead of User A, and Non-user never sprayed pesticides.
Finally, total members selected were as follows:
Users A = 295, Users B = 148 and Non-User = 126

4 User As and 4 Non-Users were absent during the single visit survey and 61 User B
never sprayed pesticides even a single time during the study period. These respondents
were excluded from data analysis.
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