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ABSTRACT

The present paper seeksto cast scepticism onthevalidity and value
of the results of al earlier studies in India on energy demand analysis
and forecasting based on time seriesregression, on three grounds. (i) As
these studies did not care for model adequacy diagnostic checking,
indispensably required to verify the empirical validity of the residua
whiteness assumptions underlying the very model, their results might
be misleading. This criticism in fact appliesto all regression analysisin
general. (i) Asthe time series regression approach of these studies did
not account for possible non-stationarity (i.e., unit root integratedness)
in the series, their significant results might be just the misleading result
of spurious regression. They also failed to benefit from an analytical
framework for a meaningful long-run equilibrium and short-run
‘causality’ in acointegrating space of error correction. (iii) Thesestudies,
by adopting a methodology suitable to a developed power system in
advanced economies, sought to correlate the less correlatables in the
context of an underdevel oped power systemin aless devel oped economy.
All explanations of association of electricity consumption in a hopeless
situation of chronic shortage and unreliability with itsgenerally accepted
‘causatives’ (as in the developed systems) of population, per capita
income, average revenue, €tc., all in their aggregate time series, might
not hold much water here.

Our empirical results prove our secepticism at least in the context
of Kerala power system. We find that the cost of dispensing with model
adequacy diagnosis before accepting and interpreting the seemingly
significant results is very high. We find that all the variables generaly
recognised for electricity demand analysis are non-stationary, 1(1). We
find that al the possible combinations of these I(1) variables fail to be
explainedin acointegrating space and even their stationary growth rates

remain unrelated in the Granger-‘ causality’ sense.
JEL Classification: C22, C32, C53, L94, Q41.
Key words: Indig, Kerala, demand analysis, forecasting, non-stationarity,



“ Puranam ityeva na sadhu sarvam;
Na capi kavyam navam ity avadyam.
Santah pariksyanyatarad bhajante;
Mudah parapratyayaneya budhih.” *
- Kalidasa (Malavikagnimitral, 2).

1. Introduction

Electricity hasbecomeavital input to thewellbeing of any society
and the demand for it from an ever-expanding set of diverse needs is
growing at anincreasing rate. Thisin turn placesincreasing demandson
scarce resources of capital investment, material means, and man-power.
Forecasting of electricity consumption needs has thus become a
significant element of utmost necessity of the planning exercise in the
power sector. More specifically, the advent of the ‘energy crisis’ has
made crucial the need for accurate projection of electricity demand.

A large number of studies have come up in India too, toeing the
same methodology as applied elsewhere. These studies, however, are
analytically insufficient and methodol ogically unsound. Their resultsare
doubtful to the extent of their failureto fulfil model adequacy diagnostic
checking?. Their conclusions are even more gquestionabl e on account of
their methodol ogical failureto allow for the possible persistence of unit
root shock in thetime series data used; their seemingly significant results
might be only an indication of spurious regression. Again, they failed to



take advantage of an integrated analytical framework for long-run
equilibrium and short-run ‘ causality’® in a cointegrating space of error
correction. Moreover, to the extent that the very foundation of demand
analysis that links energy consumption to socio-economic ‘causal’
variables is shattered in the face of long-run power shortage and
unreliability, that render demand just supply-constrained, these
econometric demand analysis lose their relevance. In this light, their
pedantic attempt to correlate the less correlatables is of little empirical
significance.

In what follows we empirically prove, in the context of Kerala
power system, our scepticism on all earlier works on energy demand
analysis and forecasting. The paper is divided into four sections. The
following section isa brief theoretical discussion, introducing the most
common modelsfor forecasting and demand analysis, theimportant tests
for model adequacy, the unit root problem and the related topics. In the
third section are presented our empirical resultsand thelast one concludes
the paper with some broad suggestions.

2. Theoretical Discussion
Forecasting Models

The forecasting methods used for electricity demand in genera
may be divided into formalised and non-formalised methods.

Non-formalised methods such as some variants of Delphi (‘jury
of executive opinion’) method arein general used for forecastsfor more
distant periods of time during which some changes in the structure of
the power sector must be considered.

In the case of the formalised forecasting methods, two approaches
may be distinguished in their scope:



i) an input-output approach in which wetry to penetratetheinternal
structure, and to examine the internal and external linkages of
the observed object and to explain itsresponse to input impul ses;
and

i) a statistical approach in which the object is treated as a ‘black
box’ whose internal workings are unknown.

More common arethe statistical approachesthat take the object as
a ‘black box’ and try to explain its mechanism on the basis of the
interconnections of the individual elements of the observed path of the
system. Here the analysis of extrapolation (or non-‘causal’ methods)
and one-dimensional or multi-dimensional regressions (or ‘causal’
methods) are used. Thelatter seek to explain the behaviour of thevariables
and its ‘determination’ in a relationship framework, while the former
non-‘causal’ methods are solely concerned with forecasting.

Extrapolation methods, based on the assumption that the past
patterns repeat in the future, thus utilise time series data to identify past
pattern in the observations and then to project it into the future. Past
patternsin time series data are recognised in two ways—oneis based on
the trend of the series, i.e., the general movement of the series in a
particular direction. In such trend extrapolation, the general behaviour
of the variable over time (as presented in the time series data) is
determined and is then projected into the future. Thus time is the
argument of trend functions. In the second method of extrapolation, viz.,
auto-regressive model, one or more previous values of the observations
themselves are the arguments; the order of the function is determined by
the number of previous observations used as arguments.

The extrapolation of energy demand may in general be carried out
using a number of mathematical functions such as:



i) linear trend Dy, = a+ Bt D
i) parabola(second degree) trend : y, =a + Bt+ yt3 2
iii) geometric (compound) trend Dy ca(@+pt 3
iv) exponentia trend Dy, =aefy 4)
v) k-transformation trend Dy, = (o BrYK ®)

vi) Growth curves; and
vii) (First order) auto-regressive model :y, = o + By, . (6)

A variation of the previous model is the logarithmic auto-regressive
model:

viii) Logarithmic auto-regressive model : logy, = a +Blogy,, (7)

Growth curves include logistic function and Gompertz function.

a) Logistic function Y, =L/ (1+aebfy; 8
and
b) Gompertz function 'y, =L exp(-a eP!); 9)

where L isthe prescribed upper limit, and ‘o’ and‘ 3 arethe parameters
tobeestimated. L, a, 3 > 0.

In linear extrapolation, the variable to be forecast, y, is linearly
plotted against time (t), and the resulting plot is extrapolated into
reasonable future time spans. The parameter * ' givesthe rate of change
(dlope) of the line, and dividing the rate of change coefficient by the
average vaue of y, gives an average (arithmetic) growth rate per time
unit. While in a linear trend the rate of change is constant, in a second
degree polynomial (parabola), it varies linearly withtimeas ‘'3 + 2yt’,
‘¥ giving the acceleration coefficient. In geometric trend extrapolation,
thelogarithm of y, is plotted against time and these linear semi-log plots
are then projected into the future. The geometric (compound) growth
rate is obtained by subtracting one from the anti-logarithm of () the



coefficient of time (t). In extrapol ation using exponential trend, the natural
logarithm of y, is plotted against time. These linear semi-log plots are
then extrapolated into the future to make forecasts. In this case, the
parameter ‘3 directly gives the (exponential) growth rate of y,. For
analysis, we consider only the exponential trend model initslinear semi-
log form, but not the geometric trend model. In k -transformation trend
method, y, val ues are transformed using an appropriate power coefficient
‘K’ lying between zero and unity. (If k = 1, we get alinear trend.) The
growth rate of this function is obtained by dividing the ‘ 3 coefficient
by the product of ‘k’ and the linear trend, ‘a + B t'.

Growth curves are used to predict the time path of avariable for
whichthereisalimit. The curvestrace thetime path of thevariablein an
‘S -form; and range from zero at ‘t = - o’ to the upper limit, L, at
‘t=+ o', These curves, for examplein the case of demand for durable
goods, explain cumulative market penetration (i.e., the percentage of
consumers possessing the durable goods), y,, asafunction of time, subject
to asaturation level. The logistic function can be transformed into

logly,/(L - y)] =-log a + Bt, and the Gompertz curve into

log[log(L/y,)] = log a - Bt.

Giventhevalueof L, thefunction can be evaluated on atime series
and the parameters estimated. The Gompertz curve, however, is not
symmetrical, while the logistic one is. With the Gompertz curve, the
growth in the variable in the initial stages is comparatively faster than
with the logistic curve.

In the first-order autoregressive [AR(1)] models, y, isforecast on
the basis of aweighted value of the previous observation, y, . A variant
of this model is the logarithmic (log-linear) autoregressive model. In
these models one has the option of setting the intercept term (a) = 0;



then ‘B’ inthe simple autoregressive model representsthe rate of change
of the seriesy,, and in the logarithmic model, the compounded rate of
growth of theseries. If a # 0, and 3 = 1, thenthe projection will increase
by the same absolute amount each time period (a random walk with
drift). If, on the other hand, a = 0, and 3 = 1, we have the naive ‘no
change’ model (driftless random walk), giving the best prediction of y,
inits previous value. Both linear and compounded extrapol ations based
on thesetwo autoregressive modelsare commonly used asasimple means
of forecasting. Note that these models involve regression with alagged
dependent variable. If the additive error process is serialy correlated,
the coefficient estimates will be inconsi stent.

Another extrapol ation method based on previous valuesismoving
average model. Here, for example, from a monthly time series, the
forecast for the next month may be obtained by the simple average of
thevalues over thelast 12 months. Instead of assigning equal weightsto
all the 12 values (such as 1/12 in the above case), it is usua that recent
values are weighted more heavily as more recent values of y, play a
greater role than earlier values. This method constitutes exponentially
weighted moving average model.

In any given case, such regression functions need not be equally
convenient. A judicia selection of an appropriate model in the given
objective condition is al the more significant. For instance, in the case
of electricity consumption, numerous anayses have revealed that three
very different timeintervals can be defined for thelong-run devel opment
of individual countries. The first corresponds to low values of energy
consumption per capita and is marked by a considerable variation in
annual increments. After having reached a certain value of the per capita
consumption, the development becomes steadier and itstrend beginsto
conform to an exponential pattern. Annual increments stabilise and
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assume a normal distribution. Having achieved a certain development
level, the growth gradually slows down, requiring functions with
decreasing annual increments for extrapolations (Lencz 1977: 85).

Simple extrapolation of historical growth rates had presented
reasonably accurate results for decades (Tyrrell 1974). In fact, the post-
World War 11 demand for electricity in the United States had been
recognised to have a consistent exponential growth (uniformly in al the
sectors: residential, commercial and industrial) and this is a well
documented phenomenon (Tansil and Moyers 1974). Later on, however,
it was felt questionable whether these trends would remain unchanged
in the future, whether the simple extrapol ation technique would provide
accurate predictions of the future, in the face of the changes observed to
occur in many of the underlying economic factors. This scepticism was
well-confirmed by the findings of Chapman, Tyrrell and Mount (1972)
who explained el ectricity demand growth as an econometric function of
four ‘causal’ factors: population, per capitapersona incomeand the prices
of electricity and natural gas, and compared electricity demand
projections obtained from this model with the extrapolated estimates of
the government and industry.

This pioneer econometric model has since been refined to reflect
more accurately the behaviour of each class of electricity consumers,
by, say, incorporating price of electric appliances as an additional
argument, formulating variable elasticity model (e.g., to account for
spatial heterogeneity), instead of constant elasticity one, and by
employing more consistent estimation techniques (e.g., instrument
variable estimation versus the familiar ordinary least squares). Such
demand analysis has facilitated to estimate the ‘effect’ of a variable on
electricity demand intermsof elasticity measures; if themodel is specified
in logarithms, the coefficient of an argument directly gives the demand
elasticity with respect to that variable.
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To account for the dynamic characteristic of demand, a lagged
dependent variableisusually used as aregressor in the log-linear model
with a partial adjustment mechanism (Koyck distributed lag with
geometrically declining weights). This specification facilitates to
distinguish between short run and long run elasticities. Thus while the
coefficient of the price variable in this model represents the short run
price elasticity of demand, the long run price €elasticity is obtained by
dividing the short run coefficient by onelessthe coefficient of thelagged
dependent variable used as a regressor, i.e., by the rate of adjustment.
However, the presence of thelagged dependent variable, asalready noted,
makes the ordinary least squares (OLS) estimator inconsistent due to
the possible correlation between the lagged endogenous variable and
therandomvariable, aswell asthe serial correlation among the successive
values of the latter. Hence the significance of instrument variable
estimation.

It should be pointed out that the use of such modelsis connected
with the prognosis of theindependent variables. Thisinturn may involve
macro-econometric modelling*.

A classical survey of the studies on the demand for electricity (in
theU. S.) wasgiven by Taylor (1975) in The Bell Journal of Economics,
and it was later on updated and extended to natural gas, heating fuels,
diesel and aviation fuels, coal, and gasoline (Taylor 1977). In
summarising the empirical results on the demand for electricity in his
survey paper in 1975, Taylor concluded:

(a) The price elasticity of demand for electricity, for all classes of
consumers, is much larger in the long run than in the short run.

(b) Thisholdsfor theincome elasticity of demand.
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(c) The long run price elasticity of demand is indicated to be
elastic.

(d) The evidence on the magnitude of the long run income
elasticity is much more mixed. Estimates range from 0 to 2, and clearly
depend on the type of model employed.

Power Consumption Forecasting in India

At the all-India level, forecasts of electricity requirement
and demand are made by the Planning Commission and by the
Annual Electric Power Surveys (APS) convened by the Ministry
of Energy, the Central Electricity Authority (CEA) being the
Secretariat to the APS. The two bodies do have extensive
discussion and this usually leads to a reconciliation of results.
Still, subtle differences exist between the methodol ogies employed
by them.

The Planning Commission estimates el ectricity demand as
part of its macro-economic analysis for all the sectors of the
economy. Industrial power demand is estimated for asel ected set
of ‘major’ (i.e., very power intensive) industries by applying
consumption normsto production targets. Therest of theindustrial
sector is assumed to consume some proportion of the power
consumption of these major industries. Railway and irrigation
requirementsareal so projected, based on targets and consumption
norms. For all other sectors — domestic, commercial, public
lighting, water works, and miscellaneous — power consumption
isestimated using trend extrapol ations or regression analysisthat
relates sectoral growth rates to electricity requirements. The
Planning Commission also uses input-output model to check the
consistency of the macro level estimates.

On the other hand, the projection by the APS of power
consumption of theindustry startswith adetailed survey of major
industries (that demand 1 MW or more of power) on their
estimated requirements. For all other sectors, ailmost the same
methods are used by the APS as by the Planning Commission,
many of the coefficients of output-electricity relationship being
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identical. However, the APS relies more on trend extrapolation
than on ‘causal’ demand analysis; further, the APS exercises are
carried out first State-wise, then region-wise and finally at the
aggregate national level. In fact, the APS State-wise forecasts
form the basis for power requirement estimates of the SEBs and
State governments. The APS position is of immense significance
for the States, since the State level power sector investment
programmes are attuned to these forecasts and stand to influence
the case for Central Plan assistance.

The APS, while providing disaggregated data, unlike the
Planning Commission, suffersfrom itslength of preparation and
the considerable cost involved in organising a detailed survey of
S0 many units throughout India. Furthermore, it has been found
that the APS may often be upwardly biased. The APS forecasts
exceed the demand met by between 20 and 80 per cent, and the
divergence generaly increases in the later years, as might be
expected. Thus the energy consumption forecasts for Kerala by
the successive APS since the 12" APS, for 1994 are in the order
of 12466, 9328, 9409, and 8567 million units (MU) respectively
(by the 12, 13", 14%, and 15", thelatest, APS). It should, however,
be pointed out that it does no good to compare these forecasts
with the actual demand met (about 7027.7 MU of energy internaly
sold) in Kerala, fraught with severe power cutsand load shedding.
Oneway to account for such upward divergenceisto regard it as
reflecting the unsuppressed demand more faithfully than the
realised demand.

No econometric study of electricity demand had dealt with the
decreasing block pricing in a completely satisfactory way, and the
estimates of price (asalso income) elasticities probably contained biases
of indeterminate sign and magnitude as a consequence. Taylor’'s
suggestions (1975) to deal with this problem were two-fold:

(a) Multi part tariffs require the inclusion of marginal price and
intramarginal expenditure as arguments in the demand function, and

(b) The prices employed should be derived from actual rate
schedules.
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All the studies (in the US) had used either ex post average prices
or prices derived from Typical Electric Bills, an annual publication of
the US Federal Power Commission. In responseto Taylor’s suggestions,
most of the studies since then have utilised ‘the wisdom of employing
electricity prices from actual rate schedules'. Several studies have also
sought to improve modelling of the dynamics of electricity demand
through inclusion of stocks of electricity consuming appliances in the
demand function, and also the possibilities of inter-fuel substitution. Some
other studies have utilised date on individual households, small
geographical areas, or the area served by a utility, in a bid to utilise a
dataset of higher quality than that provided by dataat the state, or national
level, aswell asto avoid (or at |east reduce) aggregation biasin estimates
of price and income elasticities.

Demand Forecastsfor Kerala

Demand projectionsfor Keralabased on the 12, 13", 14"
and 15" APSresultsarein consideration now in the State. A steady
decrease in the peak demand/energy consumption regquirements
isdiscerniblein each of these forecasts that is attributed to some
restrictions and revisions in the trends relative to the base year,
(reflecting the increasing quanta of suppressed demand due to
lack of generation capability). The State has accepted the 14"
APSas'more dependable’ (Government of Kerala, Report of the
Steering Committee on Energy and Power, Ninth Five Year Plan,
1997-2002, State Planning Board, Thiruvananthapuram, Feb.,
1997, p. 12); whereas the Balanandan Committee (to study the
development of electricity in Kerala) finds the 15" APS ‘as the
better estimates for future planning’ (Report, Feb., 1997, p.37).
Considering the divergences in these forecasts of the APS for
Kerala(asshown above, for example, for 1994), the State Planning
Board constituted aworking group to study the demand forecasts
for Kerala. The committee used a log-linear model and growth
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rates of 4.72, 10, and 15 per cent for the HT and EHT industries
to arrive at three different demand projections. The domestic
demand projectionsin al these exerciseswere based on the growth
of population as per the Census report. For the other sectors, the
projectionswere made based on the trends (using semi-log scale).
It should be noted that the energy demand forecast for 1994 by
the Committee is only 8945 MU.

International Energy Initiative (IEl), Bangalore, has put
forward a Development Focused End-Use Oriented, Service
directed methodology (DEFENDUS) for estimating demand and
supply of energy in an energy system, and an exercise based on
this has been done for the KSEB. This methodol ogy, withitstwin
focus of developed living standard and improved end-use
efficiency, seeks to estimate demand for a particular energy
source/carrier inagiven year based on two variables—the number
of energy users and their actual energy requirement in any base
year aswell asthe expected changesin the subsequent years. The
total energy demand is then equal to the aggregate demand of all
the categories of usersfor every end-use.

Model Adequacy Diagnosis

In addition to the usual parameter significance tests, demand
analysis and forecasting models are evaluated for their simulation
potential also. The simulation error measures, signifying the deviation
of the simulated variable from its actual time path, which we consider in
thisstudy arethe Thell inequality coefficient (T1C) and its 3 components.

TICisavery useful simulation statistic related to root mean square
error (RMSE), which is the square root of the mean of the squared
deviations between the simulated and the actual values, and applied to
the evaluation of historical simulations or ex post forecasts. It is given
by the ratio of the RMSE to the sum of the square roots of the mean
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squared values of the simulated and the actual data series, such that it
will awaysfall between 0and 1. If TIC =0, the simulated and the actual
seriescoincidefor all t andthereisaperfect fit. If TIC = 1, on the other
hand, the predictive performance of the model istheworst. The TIC is
decomposed into 3 components, bias proportion (BP), variance proportion
(VP), and covariance proportion (CP), with BP+ VP + CP= 1. The BP
isanindication of systematic error, sinceit measuresthe extent to which
the mean values of the simulated and actual series deviate from each
other. Whatever be the value of the TIC, we would hope to obtain a BP
much closer to zero for a good fit. The VP indicates the ability of the
model to replicate the degree of variability inthe variable under study. If
VPislarge, it means that the actual series has fluctuated considerably
while the simulated series shows little fluctuation, or vice versa, which
isquite undesirable. Wewould hopeto see minimum variability between
the two. The CP measures the unsystematic error, i.e., it represents the
remaining error after deviations from average values and average
variabilities have been accounted for. Since it is unreasonable to expect
simulations perfectly correlated with actual series, this component of
error is less problematic. In fact, it is generally accepted that for any
valueof TIC >0, theideal distribution of inequality over the 3 components
isBP=VP=0,and CP=1.

Animportant stage, however, that isto precede hypothesistesting
inforecast modelling ismodel adequacy diagnostic checking, one of the
three concernsin this paper. Thefitted model is said to be adequate if it
explains the data set adequately, i.e., if the residual does not contain (or
conceal) any ‘explainable non-randomness’ |eft from the (‘ explained’)
model. It is assumed that the error term in the model is a hormally
distributed white noise® (with zero mean, constant (finite) variance, no
serial (auto) correlation and no (cross) correlation with the explanatory
variables). Since the ordinary least squares (OLS) estimators are linear
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functions of the error term, (under its normality assumption) they
themselves are normally distributed. This normality assumption is
essential for deriving the probability (sampling) distributionsof the OLS
estimatorsand facilitates hypothesistesting, using t and F statistics, which
follow t and F distributions only under normality assumption, in finite
samples. Hence a diagnostic checking on normality assumption must be
carried out before proceeding with hypothesis (significance) tests. The
normality test wereport hereisdescribed in Doornik and Hansen (1994);
it testswhether the skewnessand kurtosis of the OL Sresiduals correspond
tothose of anormal distribution. A reasonably high probability (p-) value,
associated with asmall test statistic value, indicates non-rejection of the
normality assumption. It should also be noted here that the mean of the
OLSresidualsis zero by construction when an intercept is included in
the model.

The no seria correlation assumption may be tested by checking
whether the residual autocorrelation coefficients are statistically zero
compared with standard deviation limits. Alternatively, we can test the
joint hypothesisthat all the autocorrelation coefficients (for agiven lag)
are statistically zero, using the residual correlogram (‘ portmanteau’)
statistic, viz., Ljung-Box (1978) statistic®. Too large a value of the
‘portmanteau’ statistic can be viewed as evidence against model
adequacy, or conversely, a large p-value confirms model adequacy.
However, as residua autocorrelations are biased towards zero, when
lagged dependent variableisincluded as regressor in the model, this (as
well as Durbin-Watson, DW) statistic is not reliable. The correct
procedure in such conditionsisto use Lagrange Multiplier (LM) test as
residual correlogram; the F-form LM test, suggested by Harvey (1981),
isthe recommended diagnostic test of no residual autocorrelation. Durbin
h test for first-order seria correlation is a LM test. It should aso be
noted that alow DW statistic need not be due to autoregressive errors,
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warranting correction for first-order autoregression” (AR(1)). Mis-
specificationsin time seriesdata can also induce serious serial correlation
among the residuals, to be reflected in low DW statistic. The RESET
(Regression Specification Test, dueto Ramsey 1969) teststhe null of no
functional form mis-specification, which would be rejected if the test
statistic is too high.

In addition to these, the assumption of no-heteroscedastic errors
should also be checked, using, say, White's (1980) general
heteroscedasticity (F-) test; a small p-value (associated with large F-
value) rejects the null of no heteroscedasticity in errors. Often the
observed serial correlation in errors may be due to what is called
autoregressive conditional heteroscedasticity (ARCH) effect, that makes
theresidual variance at timet depend on past squared disturbances (Engle
1982). Henceit is advisable that onetest for the ARCH effect too before
accepting the routine statistics at face value. We can also test for the
instability of the parameters in the model through ajoint (F-) statistic,
large values of which reveal parameter non-constancy and indicate a
fragile model with some structural breaks (Hansen 1992). Note that the
indicated significance is valid only in the absence of non-stationary
regressors.

Unit Root Problem

Thisisthe second of our concerns.

From a theoretical point of view, atime series is a particular
realisation (i.e., a sample) of a stochastic process. If the underlying
stochastic process that generates the series can be assumed to havefinite
parameters and to be invariant with respect to time, then the process (as
well asitsrealised series) issaid to be stationary. Thissimply meansthat
the mean, variance and autocovariances of the seriesare al constants. In
thiscase, i.e,, if the processis stationary, the time series can be described
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by asimple algebraic model. If, on the other hand, the characteristics of
the stochastic process change over time (i.e., isnon-stationary), it is not
possible to model the process in terms of an equation with fixed
coefficients, estimated from past data.

For an instance, consider the process given by the first order
autoregressive, AR(1), model witha = 0,

Yy =PY T U (10)
whereu, isawhitenoiseand p istheroot of (10). If |p|< 1, theprocess
isdynamically stable (i.e., stationary) and if | p | > 1, it is dynamically
explosive (i.e., non-stationary). If the process has a unit root, i.e., if
Ip| =1, the process never dampens down nor explodes. In this case, y,
can be represented, through successive substitution and assuming that
theinitial value (of y, at t=0) y, =0, interms of the cumulation of al the
past shocks: y, =u,+u_, +.. =Zu fori=1,2,...1t; thusthe behaviour
of y, isdetermined solely by the cumulation (from past to the present) of
random shocks. That is the shock persists and the process is non-
stationary®. Thus unit root problem refersto non-stationarity problem of
economic time series. In this case, the process has a zero mean (that is,
itstrend, Zu, for i =1, 2, ..., t; isstochastic, that cannot be predicted
perfectly), but its variance and autocovariances increase infinitely with
time®.

With aunit root, the above processin (10) iscalled arandom walk
(without drift), in recognition of the similarity of the evolution of y, to
the random stagger of a drunk. Thus the change in y, , i.e., the first
difference Ay, =y, -y, issimply a(stationary) white noise (u) and is
hence independent of past changes. Thus in this case y, can be made
stationary through first-differencing. A seriesthat can be made stationary
through differencing is said to belong to difference stationary process
(DSP) class.
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Adding aconstant (a # 0) to the above simple random walk model
yields a random walk with drift, accounting for a deterministic trend
also in the series, upward or downward depending on a > or < 0. The
processin this case can bewrittenas a t+zu, for i=1,2, ..., t, sothat
the mean, variance and autocovariances of the process are all functions
of time. On the other hand, for astationary (less-than-unit root) process,
all these characteristics are constant and this property is made use of in
econometric estimation. Remember that the OLS estimator from a
regression of y, on x, isthe ratio of the covariance between y, and x, to
the variance of x.. If y, is a stationary (|p| < 1) variable and x, is non-
stationary (|p| = 1), the OLS estimator from the regression of y, on x,
converges to zero asymptotically, because the variance of x, the
denominator of the OLS estimator, increases infinitely with time and
thus dominates the numerator, the covariance between y, and x,. Thus
the OLS estimator cannot have an asymptotic distribution. This is the
unit root (non-stationarity) problem.

Resultsfrom regressionswith non-stationary variables can bevery
much misleading. Granger and Newbold (1974) found that the regression
coefficient estimated from two series generated by independent random
walk processes was statistically significant, with very high R?, but very
low DW statistic (indicating high autocorrelation in residuals). When
theregression was run in first differences of the series, the R? was close
to zero and the DW statistic close to 2, thus proving that there was no
relati onship between the series and the significant results obtained earlier
was spurious. Hence they suggested that the event R? > DW meant
‘spurious regression’ and the series should therefore be examined for
association by running regression in thefirst differences of the variables.
Plosser and Schwert (1978) gave further empirical evidencesin favour
of first differencing in regression models.
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Trend removal via differencing to induce stationarity in non-
stationary series is an important stage in autoregressive-integrated-
moving average (ARIMA) model building (Box and Jenkins 1976). If a
series requires differencing k times to be stationary, the seriesis said to
beintegrated of order k, denoted by 1(k). Inthe earlier example of random
walk model (10), y,isI(1) variable, while Ay, is1(0), stationary, variable.

At the same time, detrending has been widely used in regression
analyses; residuals obtained from such detrending models, regressing
economic time series on time, have been interpreted as cyclical
componentsin the context of business cycletheory®. Such models, taking
the variables in logarithm have a so been used to estimate trend growth
rates in historical contexts (Craft et al. 1989 a, b). The question of the
choice between differencing and detrending has subsequently led to
recognising the differentiation between difference stationary and trend
stationary series. A processthat is stationary around adeterministic trend
is then called a trend-stationary process (TSP, so that the series can be
detrended). The model x = a + Bt + u, with finite mean (a + Bt), and
constant variance (o, ?) over the sample period, represents a TSP. The
mean, though afunction of time, is perfectly predictable given thevalues
of time and the parameters a and B, and represents a deterministic
trend of the non-stationary x,. On the other hand, the driftless random
walk model, y, =y, + U, with azero mean and atime-varying variance,
represents a DSP (as Ay, is stationary). It has a stochastic trend,
incorporating al the past shocks (Zu, for i=1,2,...,t, whichishardly
predictable) that have persistent effect on the level of y,. For arandom
walk with drift, there is a deterministic trend (at) also, buried in the
noise componentt,

Thus it becomes essential to identify the true nature of a non-
stationary series i.e., whether it belongs to TSP class (described by
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deterministic trend) or to DSP class (integrated processes described by
stochastic trend and also a deterministic trend, if a # 0). In regressions
with TS series, inclusion of atime trend in the model will detrend the
variables'?. With DS series, on the other hand, cointegration modelling
isrequired, if feasible. Thefirst step however isto deal with the problem
of discrimination between TSP and DSP models.

The first ever attempt at such a model selection was by Nelson
and Plosser (1982), though they accomplished it asa (nested) hypothesis
testing. They tested the null hypothesisthat atime seriesbelongsto DSP
class against the alternative that it belongs to TSP class, using the
(augmented) Dickey-Fuller unit root tests (Dickey 1976; Fuller 1976;
Dickey and Fuller 1979). They started with a TSP model in which the
errors are serially correlated (in first order):

y=a+pt+u,adu =pu, +e,

where € is assumed to be Gaussian white noise. Nesting these two
models® gives:

y=0a+Bt+ply, -a-B(t-1)]+e,or
Y, =0+yt+py, te, (11)

whered=a (1-p) +Bp and y=f (1 - p). After observing the sample
autocorrel ation function of the first differences of the series, Nelson and
Plosser included in the above model, lagged values of Ay, as additional
regressorsto correct possible serial correlationsinthe errors (asin ADF
testing procedure). The null hypothesis to be tested is Ho:
p =1 (andy=0), against the one-sided alternative | p | < 1. If the unit
root null is rejected, then y, belongs to the TSP class, otherwise to the
DSP class. Note that in this Bhargava formulation of the model, if
p=1 theny =0, and y, (under the null) is arandom walk with drift
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(i.e., DSP). However, the usual t-test cannot be used to test the null
hypothesisof p = 1intheaboveequation, since under thisnull, y,isl(1)
and hence the t-statistic does not have an asymptotic distribution. The
relevant asymptotic distribution, based on Wiener processes, is known
asDickey-Fuller distribution and Fuller (1976) providesthecritical values
of these statistics. Nelson and Plosser found that 13 out of 14 US
macroeconomic time series they analysed belonged to the DSP class
(the exception being the unemployment rate), the autoregressive unit
root null having failed to be rejected. The study has been followed by a
large number of empirical analyses, with different unit root tests
procedures, that have basically confirmed the findings.

In a second model with a constant only (i.e., no trend, a # O,
3 = 0) in the Bhargave type formulation, we have

Y= 0+ py,te, (12)

whered=a (1- p); if p=1, then d =0, and (under the null) we have a
drftlessrandom walk or DS series. Under the alternative, |p < 1,y,isa
stationary seriesaround &/(1 - p). If the unit root null is not rejected in
the first model, we can check for another unit root in the series, by
applying the ADF test to the differenced series'. Since our inference
from the non-rejection of the unit root null inthefirst model characterises
the series asdifference stationary with drift, we can use the second model
in differences for testing for a second unit root or stationarity. If the null
isrejected, then the first-difference seriesis stationary?®.

Perron (1989), however, demonstrated that structural breaksinthe
series can lead to biased results in favour of presence of persistence
(when in fact there is not). Assuming that the shock (such as the Great
Crash of 1929 and the oil price shock of 1973) isexogenous (i.e., known
structural break), he proposed a modified DF test for a unit root in the
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noise function. He considered three different models under the unit root
null. The models allowed for an exogenous change i) in the level
(intercept) of the series (a‘crash’), ii) in the rate of growth (slope), and
iii) in both the intercept and slope of the series. The general model (iii)
isgiven by:

y,=a+py,+ Bt +yDT + 6DU + Z3Ay, + U,
where DU, = 1if t>TB, O otherwise, and

DT, =t if t>TB, 0 otherwise; TB refers to the time of break and the
summationisoveri=1,2, ..., p.

The variable DU (dummy model) captures the possibility of
‘crashes and DT (splinemodel¢), growth changes. Resultsfrom aMonte
Carlo experiment (Perron 1989) showed that if the magnitude of the
shock is significant, one can hardly reject the unit root null, even if the
seriesis stationary with a broken trend and white noise errors (i.e., with
no unit root in the noise term). Perron tabulated the critical values for
the unit root testsin the presence of structural break, for given values of
A =TB/T, theratio of pre-break samplesizeto total samplesize. Applying
the modified DF test to the same US macroeconomic series as used by
Nelson and Plosser (1982), Perron reached the * startling conclusion’ that
most of the series (except three) ‘are not characterised by the presence
of aunit root and that fluctuations are indeed transitory’ (Perron 1989:
1362). This paper has sparked a controversy and his assumption of a
known, exogenous break has been severely criticised as raising the
problem of pre-testing and data-mining for the choice of the break date.
Severa methods have since been devel oped for endogenising the choice
of break point into thetesting model, and some of theresultshavereversed
Perron’s conclusions.
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Modelling relationships among non-stationary variables has
essentially involved their differencing to induce stationarity. Solving the
non-stationarity problem via differencing is, however, equated to
‘throwing the baby out with the bath water’, because differencing results
in ‘valuable long-run information being lost’. Most of the economic
relationships are stated in theory as long-term relationships between
variables in their levels, not in their differences. We need to conserve
and utilise in analysis this long-run information contained in the level
variables, and at the same time, we have to be on the watch for spurious
regression of integrated variables. Both these seemingly irreconcilable
objectives could be achieved by means of cointegration mechanism.

The concept of cointegration was introduced by Granger (1981)
and Engle and Granger (1987), and is used as a statistical property to
describe the long-run behaviour of economic time series. If two seriesy,
and x both arel(1), thenin general, any linear combination of them will
also be 1(1). However, an important property of 1(1) variables is that
there can be some linear combinations of them that arein fact 1(0), i.e.,
stationary. Thus, a set of integrated time series is cointegrated, if some
linear combinations of those (non-stationary) series are stationary.

Let usdefineu, as:

u=1y,-Bx, (13)

where bothy, and x are I(1). If u, is1(0), theny, and x, are said to be
cointegrated, denoted by Cl (1, 1). Since both thevariablesare (1), they
are dominated by ‘long wave' components, i.e., they are on the same
wave length. But u,, being 1(0), does not have these ‘long wave’
componentsasthese ' trends’ iny, and x, cancel out to produce stationary,
1(0), u, (see Griffiths, et al. 1993: 700-702). 3 is called the constant of
cointegration®’.
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Thus, if two variables are integrated of the same order (having the
same ‘wavelength’), they can be cointegrated. Inthislight, theregression
of thesetwo variables, y, = x, + u, makes sense (isnot spurious), because
the variables do not tend to drift apart from each other (i.e., they move
together) over time. Thisthenimpliesthat thereisalong-run equilibrium
relationship between them.

Engle and Granger (1987) discuss two simple tests of the null
hypothesisthat y, and x, are not cointegrated, that isthe u, is1(1). The
first, Durbin-Watson Cointegrating Regression (DWCR), test is based
on the DW statistic from the relationship betweeny, and x, and tests, on
thenull hypothesisthat theresidua u, is1 (1), whether DW issignificantly
different from zero™® using the critical values provided by Sargan and
Bhargava (1983: Table 1). Also, the R? value will be very high for
cointegrated variables. The second test directly examines residuals
through an ADF test for unit root. Thus, given two variables y, and x,,
if they areindeed 1(1) processes, verified through some unit root tests, a
simple method of testing whether they are cointegrated isto estimate the
‘cointegrating regression’:

Y =a+px*u, (14

and then test whether the residua u, is I(0) or not, using the t-ratio on
u,, fromtheregression of Au, onu,, andlagged valuesof Au, inaway
analogous to the unit root (ADF) testing discussed earlier. If u has no
unitroot, that is, thelinear combinationu, =y, - a - Bx,is1(0), thenthere
exists a cointegrating relationship betweeny, and x,. The DF and ADF
testsin this context are known as Engle-Granger (EG) test or Augmented
Engle-Granger (AEG) test. Engle and Granger (1987) prefer this latter
test as having more stable critical values, though Banerjee, et a. (1986)
make a case for DW statistic on the grounds that its distribution is
invariant to nuisance parameters such as a constant.
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A significant recognition in this context is the model adequacy
diagnosis implied in the single-equation residual-based cointegration
tests. Remember two (or more) non-stationary variables integrated of
the same order can be cointegrated, if the residuals from their linear
relationship are a 1(0), or stationary, series, i.e., white noise! This is
nothing but the model adequacy criterion in regression approach. In this
light, residual based cointegration tests can be a final step in model
adequacy diagnostic checking.

The residual based single equation methods fail to test for the
number of cointegration relationships when there are more than two
variables. Hence the use of system methods in vector autoregression
(VAR) framework that treats all the variables as endogenous. The most
popular system method is the Johansen (or Johansen and Juselius, JJ)
method, based on canonical correlations (Johansen 1988; Johansen and
Juselius 1990), that provides two likelihood ratio (LR) tests. Thefirst,
trace test, tests the null hypothesis that thereareat most r (O<r<n)
cointegrating vectors, or equivalently, n— unit roots. The second,
maximum eigenvalue test, tests the null hypothesis that there are r
cointegrating vectorsagainst thealternative of r+1 cointegrating vectors.
Johansen and Juselius recommend the second test as better. Reimers
(1992) arguesthrough a Monte Carlo study of the Johansen LR test that
the test statistic be corrected for the number of estimated parametersto
obtain satisfactory size propertiesin small samples. The correction isby
replacing T by T-np in the test statistic, where T is the number of
observations, n isthe number of variablesand p isthelag length of the
VAR.

If y,and x, are both I(1) and cointegrated, then by the Granger
Representation Theorem (Engle 1983; Engle and Granger 1987), there
exists an ‘error correcting’ data generating mechanism through the
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‘equilibrium error’, u,. In an error correction model (ECM), the

‘equilibrating’ error in the previous period, u,,, captures the adjustment

towards the long-run equilibrium. This error correction term (EC), u,,,
issaid to ‘Granger cause’ Ay, or Ax, (or both). Asu,, itself isafunction

of y ,and x ,, either x is‘Granger caused by y,, ory by x ,. Thatis,
the coefficient of EC containsinformation on whether the past values of
the variables ‘affect’ the current values of the variable under
consideration. A significant coefficient impliesthat past equilibrium errors
play some role in ‘affecting’ the current outcomes. This then implies
that there must be some ‘ Granger causality’ between the two seriesin
order to induce them towards equilibrium. The short run dynamics are
captured through theindividual coefficientsof thedifferenceterms. Thus
ECM brings together ‘ Granger causality’, concerned with short term

forecastability, and cointegration, concerned with long run equilibrium.
3. Analysis

Model Adequacy Diagnostic Checking

We start with an analysis of the time series data on the internal
consumption of electricity (in million units, MU) in the Kerala system
from 1957-58 to 1998-99 in the framework of the common extrapolation
models'®. We are not considering the growth curves, which are more
appropriate for the demand for durable goods with an acceptabl e market
saturation level. Table 1 reports the OLS estimates of the parameters
along with other statistics of these models—the four trend extrapol ation
models (linear, quadratic, k-transformation and semi-log or exponential)
and the two first order autoregressive [AR(1)] ones. The ‘k-
transformation’ model has been turned out to be either defined or
significant only for the values of k = 0.3, k = 0.4 and k = 0.5, out of a
range of values tried; we report only the resultsfor k = 0.5.
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All the models appear to have highly significant fit, based on the
conventiona tests (R?, F- and t- values), to the immediate sati sfaction of
an average researcher. The estimated measures of simulation error—TIC
and itsthree components—al so offer pleasant results. By these measures,
it appears that all the models in general have very good fitting
performance, with very low TIC, along with an amost zero BP in most
cases and acloseto zero VP, In fact, this close correspondence between
the actual and thefitted is an indication of non-stationarity of the series
(Doornik and Hendry 1997: 33); but an average investigator,
unaccounting for this, might be easily mided by the seemingly significant
results. Here lies the significance of model adequacy tests.

Now see the danger signal of ‘spurious regression’ (R? > DW)
blazing in most of these models, where diagnostic tests for model
adequacy fail to recognise them. Thus, athough for al the four trend
extrapolations, the normality assumption of the residuals cannot be
rejected®, the important stationarity conditions all stand violated. The
very low DW statistics for these four models indicate possible positive
first-order serial correlation among theresidualsthat leavesthe estimated
standard errors unreliable. But this is not the only problem; the LM
statistic is highly significant, such that the null of no residual
autocorrel ation getsrejected with almost certainty in all thefour cases?.
So does the null of no heteroscedasticity in errors for the linear and
semi-log models. Thus in these two models, the observed residual
autocorrelation may be due to the ARCH effect also?. In the k-
transformation model too thisis so (i.e., the error variance is serially
correlated), but at 10 per cent significance level only, while in the
quadratic trend model, at 25 per cent level. Thejoint parameter stability
statistic is large enough to reject the null hypothesis of parameter
constancy and of astrong model in all these cases; and so isthe RESET
(F-) statistic such that the null of no functional form mis-specification
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too is rejected (except the k-transformation model, for which these
statistics could not be estimated); the observed autocorrelation can be
due to mis-specified functions also.

The effects of first order autoregressive [AR(1)] correction on
linear, quadratic and semi-log trend models*® are also reported in Table
1. The first two models fail to recover in this exercise. The parameter
instability persists; the data remain functionally mis-specified, and the
residuals come out to be non-normal, serially correlated and
heteroscedastic. The semi-log model, on the other hand, hastremendously
improved, with no mis-specification. The errors are now statistically
normal, serially uncorrelated and homoscedastic; the null hypothesis of
joint parameter constancy cannot be rejected. The series appears to be
amost stationary after the ‘quasi-differencing’, involved in the AR(1)
correction of thelogarithmically transformed series. And the model may
pass safely for the next stage of hypothesistesting®.

The two autoregressive extrapolation models offer opposite
behaviour patterns, though very low RESET statistics refute mis-
specification in both the cases. Note that the coefficient of the lagged
dependent variable used asthe regressor in both the casesisamost unity!
The residuals from the simple autoregressive equation are distributed
highly leptokurtic, such that the normality test fails. The Durbin-h statistic
for the simple AR model turns out to be 0.533, which is much less than
the normal critical value of 1.645 at 5 per cent significance level,
indicating non-rejection of the null of no first order seria correlation.
However, the LM test confirmsthe presence of overall serial correlation
in the errors, which are also heteroscedastic, as the White and ARCH
tests indicate. The model is also fragile with joint parameter non-
constancy. The logarithmic autoregressive model, on the other hand,
passes all the tests — the parameters are not unstable; and the residuals
are normal, uncorreelated®, and non-heteroscedastic also.
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Having thus proved that unwarranted application of extrapolation
model sfor forecasting without model adequacy tests|eadsto misleading
results, we now turn to examine the general practice of time series
econometric analysis of electricity demand. It goes without saying that
in the backdrop of a high standard of living, the distinctly evolved
influential matrix of socio-economic factors must have asignificant say
in determining electricity consumptionin Kerala—for onething, consider
the spread effect of the ‘ Gulf boom’, blooming the construction sector
and the markets for electrical and electronic appliances. Hence the
significance of ademand analysis.

In Table 2 we report the results of the econometric analysis of
electricity demand (internal consumption) in Keralafor the period 1960-
6110 1998-99. The‘causal’ factors considered are the ones usually used
in such studies— per capita state income (at 1980-81 prices), number of
consumers (in the place of population), and real averagerevenue (average
sales revenue deflated by wholesale price index number for electricity,
base: 1981-82; as a proxy for average price). The results are mixed for
the two types of models (ssmple and logarithmic) considered, though all
the first four models suffer from parameter instability?®. Surprisingly,
the logarithmic model (Model 2) is haunted by ‘spurious regression’
effect, which persists even in the presence of atime trend, included to
‘detrend’ thevariables (Model 4). Inthe simple Model 1, DW test result
isinconclusive, but thereisno presence of it when atimetrendisincluded
(Model 3). Except this one, all the other three models are functionally
mis-specified also. Normality and White homoscedasticity assumptions
are violated for the simple models (1 and 3) without and with trend,
though there isno ARCH effect; and by the LM tests, residuals from all
the models are autocorrel ated.
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A final model (Model 5), including aone-period lagged dependent
variable in the logarithmic mould, comes out to be non-fragile with
normally distributed and homoscedastic residuals. Note that thisis the
usually used partial adjustment (short run consumption) model?,
appearing here with appeaingly significant R? and t-values. However,
the large Durbin-h statistic strongly rejects the null of no serial
correlation?®; the LM (F-) test also confirms this. And the no-mis-
specification null too remains rejected. Note that the lagged dependent
variable in thismodel, unlike in the above autoregressive cases, has not
(asit should have) biased DW towards 2.

The upshot of the whole exercise brings into light an important
aspect in model building, in terms of the significant results of the
diagnosis for model adequacy of the two extrapolation models: semi-
log trend model with AR(1) correction and first-order logarithmic AR
model. That important aspect isthat both the modelsinvolve logarithmic
transformation and ‘quasi’ differencing of the consumption series that
could induce to some extent stationarity in the non-stationary series®.
And thisinduced stationarity is reflected here through the whiteness of
the residuals.

It should be noted that while the above two models pass the
diagnosis, its failure marks the multivariate models, which might
otherwise pass all hypothesis and simulation significance tests and
mislead a researcher.

Our intention of this presentation has been to bring it home that a
non-judicious handling of regression techniques (considering only the
significance of R? and t-values, as also the ssimulation error measures)
for time series analysis/forecasting could be misleading. Most
macroeconomic time series being non-stationary, a fixed-coefficients
model building endeavour is just undesirable. Successful infusion of
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stationarity into non-stationary series, however, depends on the right
choice of the appropriate method — detrending or differencing. And this
in turn depends upon the factual recognition of the true nature of these
series; i.e., whether they belong to TSPclassor DSPclass. Inany analysis
based on time series, an identification exercise for the series must then
precede the model building stage, because of possible problems of
misleading results particularly of under-differencing® (i.e., modelling a
DS series as a TS series). This is a possible problem with trend
extrapolation models. For instance, electricity consumption in Kerala
being aDS serieswith aunit root (thiswill be proved later on), itsunder-
differencing in the above trend models results in misleading results of
spuriousregression. In thislight should we consider the common practice
of estimating trend growth rate from semi-log (exponential) trend model.
If model adequacy tests are significant after first order AR correction,
carried out in view of R?2> DW, the coefficient of t may beinterpreted as
the trend growth rate.

In this context we propose another useful model — a partial
adjustment (short run) growth rate model, regressing logarithmic
consumption onitsown first order lagged term and time (Table 1, Model
10). Most of the results from this model are the same as those from the
semi-log trend model with AR(1) correction (model 9), such that the
two models are equivalent, since the presence of the lagged dependent
variable as aregressor has the same quasi-differencing effect (in Model
10) asAR(1) correction (in Model 9); the two parameter estimates are
equal (0.798). The advantage of using Model 10 is that it gives a short
run growth rate (coefficient of t = 0.0136), a coefficient of long run
adjustment (0.798) and a long run growth rate (0.0136/(1 — 0.798) =
0.0676), the same trend growth rate from Model 9.
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In line with our interpretation of residual based cointegration test
as a model adequacy diagnostic checking, we have applied unit root
(DF) tests to the residuals from these three significant models (7, 9 and
10), and found no unit root in the noise functions, thus reconfirming
their whiteness™ . These models are thus adequate. The logarithmic AR(2)
model (7) is arandom walk with drift; the intercept (0.231) gives the
approximate growth over the previous period.

Our linear and quadratic extrapolation models with and without
AR(1) correction, as well as the econometric models 3 and 4 (models
with time trend) are good illustrations of under-differencing. In the
absence of a detailed model adequacy diagnostic checking, the ‘high
significance’ of these models would have fascinated and thus misled an
averageresearcher; and soit hasbeen, unfortunately, in the case of amost
all the previous studies on electricity/energy consumption in India.

To start with, Pachauri (1977) and Tyner (1978), through regression
technique, have found very strong association between energy
consumption and economic development in India, and the latter hasgone
to the extent of attempting to identify ‘causation’ between the two. A
large number of regression analysis of electricity demand (forecasting
modelsand ‘ causative’ models, using population or number of consumers,
per capita state income or domestic product or sectoral income, average
sales revenue, etc.) have mushroomed in the luxuriant academic/
professional fields. The Fuel Policy Committee of India(1974), Banerjee
(1979), World Bank (1979), Parikh (1981) and Pillai (1981) are some of
the forerunners here, in addition to the regular exercises by Planning
Commission, CEA and SEBs. All such studies, based on time series
regression analysis, not accounting for possible non-stationarity problem
in the data series, invite scepticism about the validity and value of their
empirical results. AlImost none of these studies has surprisingly cared
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for even model adequacy diagnosis! Inthislight, al these studies might
be just spurious regression. They might also suffer from having
inconsistent and less efficient OL S parameter estimates by using non-
stationary variablesin levels outside the cointegrating space (Engle and
Granger 1987). Hence our methodological scepticism about the
significant results of correlation or ‘ causality’ found in such studies.

Unit Root Tests and Cointegration Analysis

We now therefore turn to the starting point of our time series
analysis, viz., the identification stage: finding out whether our series
belong to TSP or DSP class. The series we analyse are: (internal)
electricity consumption (Cin MU) in Kerala, number of consumers (N),
averageprice (revenue) (AR, paise per unit) (all during 1957-58to 1998-
99) and per capita State income (PCl, in constant Rs., during 1960-61 to
1998-99). All thevariablesarein logarithms; logarithmic transformation
is expected to reduce the effects of atime-varying variance in a series
and make it stationary®2 (Holden, et al. 1990: 64).

Following Nelson and Plosser (1982), we base upon the Bhargava
type formulation of two ADF test models, our conclusion and
interpretation of the unit root test results under the null and alternative
hypothesis —one with atrend (including constant) and the other with a
constant only. In the ADF test model, the specification of the lag length
assumes that the residual (u)) is white noise. Hence the optimum lag
length (2 for C and PCI and 3 for N and AR in levels and 1 for all in
differences) is selected so asto achieve empirical whitenoiseresidual s,
satisfying normality, stationarity and homoscedasticity assumptions
(Table 3). The selected lag wasfavoured by Akaikeinformation criterion
also. The univariate ADF unit root test results are reported in
Table 4.



36

The DW-statigtic for thelevel of avariable(y,) isasimpleindicator
of itsintegrated property, and therefore we al so report the DW-statistics
for the concerned level variables. If y isarandom walk (with or without
drift), DW will be close to zero, and if it is white noise, DW will be
around two*. The DW-statistics obtained of the levels of (the logs of)
C, N, and PCI are close to zero and that of AR isaso small, indicating
the integratedness of these variables. The univariate ADF test results
also show that the unit root null cannot berejected in all the cases—that
is, al the serieswe consider do bel ong to (drifting) DSPclass. We further
check for another unit root in the series. The DW-statistics for the first-
differences of (thelogs of) C and AR are around two, suggestive of their
whiteness, but those for N and PCI are small, giving some signs of
integratedness. The ADF tests, however, fail to find any more unit root,
and hence we maintain that all these seriesare (1), not | (2).

Isthisinference influenced by the effects on the ADF test statistic
of structural change in the series? To find out whether any significant
structural change has tended to taint the test statistic in favour of non-
rejection of the unit root null in each case, we apply Perron’s (1989) unit
root test inthe presence of structural breaks. Graphical analyses® identify
three possible breaks of ‘ crashes' (and subsequent ‘ growth rises') in the
time series of electricity consumption in 1983-84, 1987-88 and in 1996-
97, and a ‘growth leap’ in the series of customers number in 1979-80
and in the series of per capita income in 1985-86. The average price
series appear very much erratic and fail to help us recognise any trend
break in itstemporal behaviour.

The infamous power famine inflicted on the pure hydro-power
system of Keralaby aseriesof drought sincetheturn of the 80sin league
with the defective capacity expansion planning explainsthe ‘ crashes' in
the power consumption series. At the same time, demand has been on
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the rise at an increasing rate reinforced by an ever-growing number of
new connections as well as connected load®. In 1983-84, consumption
fell by about 7.2 per cent over 1981-82, and then rose by 25 per cent in
the next year; afall of 4 per cent in consumption in 1987-88 over 1985-
86 was followed by an increase of 21 per cent in the next year, and afall
of 5.3 per cent in 1996-97 over the previousyear, by arise of 10 per cent
in 1997-98. The growth in the number of consumers got an accel erated
fillip with the commissioning of the Idukki (Stage 1) power project in
1976-77, and by 1979-80 the growth trend started to shoot up, but only
to lose some momentum during the shortage period. In (constant) per
capitaincome series, an insignificant growth is discernible after 1964-
65 for afew years; from 1970-71, the series appears stagnant for about
one and ahalf decade, and then from 1985-86, significant growth pushes
the seriesup forcefully —amanifestation of the‘ gulf boom’ inaliberalised
economic atmosphere.

Intheface of such apparent breaksin these series, we subject them
to Perron (1989)’s unit root test and the results are presented in Table 5.
The optimum lag is identified such as to achieve white noise residuals
here also. The coefficients of t, DU and DT in the Perron’s unit root test
regression modelsturn out to beinsignificant in the case of consumption
with break years of 1983-84 and 1987-88. These coefficients are
significant for the consumption serieswith abreak in 1996-97 (at 10 per
cent level only), for customers' number with break in 1979-80, and for
per capita income series with break in 1985-86. However, considering
the estimated Perron’stest statistic, inno caseisit significant even at the
10 per cent level, reconfirming the presence of unit root in these series.

The series thus being integrated of the same order, i.e,, 1(1), we
next turn to check whether the power consumption series has a long-
term rel ationship with other variablesunder consideration, that is, whether
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there exists an economically meaningful cointegrating vector (cv) among
thesevariables, using thetwo commonly used cointegration tests namely,
the (Augmented) Engle-Granger (AEG, Engle and Granger 1987) test
and Johansen and Juselius (1990) test. Sincethe cointegration test results
are sensitive to the lag length of the VAR model (Hall 1991), optimum
lag length for cointegration test is determined on the basis of theresidual
mis-specification tests of the VAR model. For alag length of 2, the VAR
model residuals have been found to be strictly white noise (Table 3).

Asafirst step, we compare the CRDW statistic of 0.635, obtained
from alogarithmic model® of electricity consumption (C) with number
of consumers(N), per capita Stateincome (PCl) and average price (AR),
with the approximate critical value of 0.641 at 5 per cent significance
level, and fail to reject the null of no cointegration among the variables
(even though the R? is close to unity, which is an indication of
cointegration). Next we go to the AEG procedure to examine whether
the residuals from this relationship are stationary, 1(0). Theresultsup to
2 lags are reported in Table 6. Here too the non-rejection of the null of
no cointegration (or of 1(1) residuals) persists even at 10 per cent
significance level for all thelags up to 2. Hence, for reconfirmation we
turn to the JJ method, which provides more robust resultswhen there are
more than two variables (Gonzal o 1994). The JJ cointegration test results
are given in Table 7, where we use the maximum eigenvalue and trace
statistics with small sample correction (Reimers 1992). Starting with
the null hypothesis of no cointegartion (r = 0) among the variables, we
find that both the corrected maximum eigenvalue and trace statistics®
are well below the respective 95 per cent critical values, further
confirming non-rejection of the null of no cointegration among these
variables at 5 per cent level of significance; i.e., there are no common
stochastic trends and the system contains four unit roots. Hence we
conclude that the cointegrating regression is spurious: the regression
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residual isan I (1) processand thereisno equilibrium inthelevels of the
variables (Phillips 1986). Hence the analysis should now be proceeded
with on their differences.

We continue with these testing procedures to see if there exists
any significant relationship for C with different possible combinations
of the three ‘causal’ variables. Thus, for instance, we consider the
logarithmic model of C with N and PCI; the CRDW statistic is 0.618,
less than the critical value at 5 per cent significance level; al the AEG
test statisticsup tolag 2 are also less (in absol ute value) than therespective
critical values, even at 10 per cent level (Table6). The Jtest alsofailsto
reject the null of no cointegration among the three variables now
considered (Table 7). Continuing with other combinations, we find that
there exists statistically no relationship at all for C with any of the three
proposed ‘causal’ variables®.

Causality in Growth Models

The result that there exists no meaningful cointegrating vector of
interest among the variables considered (that any linear combination of
these integrated variables still remains integrated) deprives us of taking
advantage of avalid error correction representation®, and thus analysing
the relationship among the variables in their levels, without losing
valuable long run information. This leaves us with the only option of
differencing the set of variables, proved to belong to DSP class, prior to
further analysis. Differencing, as already noted above, is recommended
for integrated series (Granger and Newbold 1974); taking differences of
logarithmic series is approximately equivalent to using rates of growth
of the series. Hence the significance of growth rate models, expressing
relationship among variables in terms of their growth rates, that isfirst
differences of their logarithms.
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All the four 1(1) series in our consideration are therefore first-
differenced and the resultant stationary series (as proved by ADF tests
earlier) of growth rates come in for possible choice as candidatesin a
growthratemodel. Thisselectioniscarried out intermsof the significance
of the variables (in growth rates) in atemporal lead-lag relationship, to
find, through pair-wise Granger-non-‘ causality’ tests, whether the growth
inN, AR and PCl aretheleading indicators of thegrowthin C. Remember
that capacity expansion planning is based on possible growth in demand
from a growing number of consumers in conjunction with price and
income. The results are reported in Table 8. In none of the cases we can
reject the null hypothesis of pair-wise Granger-non-‘ causality’. That is,
the annual growth rates of electricity consumption are not granger-
‘caused’ by those of any of the three variables, each considered in turn.
Similarly, there has been no significant temporal feedback from annual
growth rates of electricity consumption to those of any of the other
variables considered® . Since the Granger-non-‘ causality’ test is very
sensitive to the number of lagged terms included in the model, it is
recommended that more rather than fewer lags should be used. Hence
we have considered lags up to 10, obtaining the same result of non-
rejection of the null*.

The Less Correlatables Dissected

This rather surprising result that none of the three variables
considered iseligibleto beincluded in the growth rate model of electricity
consumption in Kerala leaves us finally with no further scope for
multivariate time series regression analysis of demand, despite the
seemingly significant scope for electricity demand analysis in Kerala,
having a high standard of living. However, these results do make some
sense in an underdeveloped power system like ours, plagued with
substantial supply bottlenecks. Our scepticism on applying regression
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method directly to non-stationary series should also descend upon the
common practice of attempting to correlate the less correlatables.
Estimating GDP-€electricity useelagticity inindustrialised countrieswhere
electricity service contributes significantly to everyday life has become
astandardtool of simpleanalysisfor someaobviously general conclusions.
However, inacomprehensiveinternational comparative study of bivariate
‘causality’ between energy use and GNP of five countries, Yu and Choi
(1985) found no ‘ causality’ inthe US, the UK and Poland, but observed
a unidirectional ‘causality’ from energy consumption to GNP in the
Philippines and areverse ‘ causality’ from GNP to energy consumption
in South Korea. Recently, Cheng (1995) detected in a multi-variate
framework no ‘causality’ from energy consumption along with capital
to economic growth in the US. In another study (Cheng 1997) for the
Latin American countries, he found ‘causality’ from energy use to
economic development in Brazil, but not in Mexico and Venezuela. Ina
most recent study for India (Cheng 1999; the first of its kind in his
knowledge), Cheng found, in amulti-variate model, no ‘ causality’ from
energy consumption to economic development, ‘which in genera is
consistent with many previous studies of other countries' (ibid.: 47),
but saw a reverse ‘causality’ from GNP to energy use, using Hsiao's
version of the Granger-‘ causality’ method.

We argue, however, that it may be unfair to map such elasticity/
‘causality’ methodol ogy onto an alien rangein an underdevel oped power
system wherethe contribution of the service of electricity isinsignificant.
Thisisso evenintheindustrial sector in India, where power remainstoo
insignificant an input*, highly substitutable by capital and/or labour,
primarily because of inadequate and unreliabl e supply, which hasbecome
along-run experience.

The methodol ogy is questionable even in the industrialised sector
power demand analysisin a less industrialised region like Kerala, that
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toowith very limited number of el ectricity-intensiveindustries. Adoption
of this methodology here then amounts to correlating the national/State
domestic product or industrial product exclusively with aninsignificant
input, in violation of the ethics of a consistent and logical analytical
exercise, and results in gross specification error. Moreover, there are a
large number of small scale and cottage industries that use practically
little electricity but together contribute significantly to the industrial
product. About 41 per cent of the net State domestic product in 1997-98
that originated in the manufacturing sector in Keralawas contributed by
the unregistered firms, most of which uselittleelectricity*. It wasfound
in 1994-95 that about 66 per cent of the enterprisesin rural India and
about 52 per cent in urban India did not use any energy in their
manufacturing process (Government of India 1998b : ii). Only 7.9 per
cent of the rural firmsand 30.4 per cent of the urban firmsin India (and
11.9 and 17.7 per cent respectively in Kerala) are reported to have used
some el ectrical energy intheir production processinthat year (ibid.: 35-
36). The contribution of the unorganised manufacturing sector, on the
other hand, in terms of gross value added to the national economy in
1994-95 was estimated at Rs. 32,274.89 crores, out of which 41 per cent
came from the rural sector; and that to the Kerala State’'s economy was
at Rs. 646.64 crores, with 72.1 per cent from the rural enterprises (ibid.:
57-64).

There is in this respect another aspect also. Kerala experienced
one of the worst drought and the consequent power famine in 1983-84,
with year-long imposition of 10 to 100 per cent power cut on industries.
However, it had surprisingly no negative effect on the growth of industrial
output. The contribution of the manufacturing sector to net State domestic
product at current prices rose by 5.4 per cent over 1982-83, and that at
constant prices showed amarginal increase of 0.2 per centintheregistered
manufacturing sector and afall of 12.3 per cent in the unregi stered sector
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—this fall in the unregistered sector continued for the following years
almost till the turn of the nineties, including normal periods, indicating
the influence of some other factors. Though power cut wasin force in
the three years from 1986-87 to 1988-89, the contribution at constant
prices of the manufacturing sector, though declined by 10.5 per cent in
1986-87, shot up in the following years (at 14.4 and 12.8 per cent
respectively); at current prices, however, it was steadily ontherise. The
registered sector had the very same pattern. The growth trend without a
break continued in the following years too. In 1996-97, even 35 to 100
per cent power cut had no adverse effect on manufacturing (both the
sectors) contribution (at both constant and current prices).

Asaready explained, all the earlier studiesin India on electricity
demand® haveinvariably used as‘causal’ regressors national/State (per
capita) income, average sales revenue and population. The first two
variables in aggregate values conceal everything of the characteristics
of the unitsinto which the analysisis paradoxically intended to make a
look. It goes without saying that the time series regression with these
variables, even if valid in a cointegrating space, yields only the macro
level elasticities over time. Consumption elasticities in the true sense,
i.e., across different income categories and tariff blocks, get suppressed
in this aggregation. Moreover, the use of time series datasimply ignores
the possihility of changes of the intercept (that on an average accounts
for the influence of factors other than those considered in the model)
and of the slope of the line (that reflects the average intensity of energy
consumption with respect to that variable); using dummy variables to
account for significant structural changes might result inincreasing loss
of degrees of freedom. Choice of asuitable deflator al so poses problems.

Average sales revenue as a proxy for average price is pregnant
with adanger of measurement error as well. Proper estimation of price
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elagticity of demand requires, (in conformity with the suggestion made
by Taylor long back, 1975, 1977), the use of data on actual rate paid by
across-section of consumers, rather than the aggregate average revenue
(to the utility) over time. Average revenue might be an indicator of the
supply price in the aggregate, but never a representative of the demand
price, the particular price a customer isfaced with at a decision making
juncture, especially inthe context of theblock ratetariff system. Average
tariff rate might be a better alternative here.

This too in its aggregation, however, conceals an important
implication of block rate structure, that makes the price of electricity
itself afunction of consumption, since in the increasing block rate tariff
prevalent in Kerala/lndia, the price to a customer rises as the volume of
consumption increases. This in turn entails a simultaneous equations
system for electricity demand and price*® across customer categoriesin
different blocks of tariff. Temporal effects through changesin intercept
and slope can be checked and explained, if pooled time series cross section
dataare used inthismodel. Thusabetter alternativeiselectricity demand
analysis based on pooled data, subject to appropriate unit root tests.
However, such data-base is not at all available in India; and at best we
can have only a cross sectional primary survey for study.

Even herethevery eladticity of electricity demandisopen to serious
questioning. The price elasticity of demand loses its relevance in an
underdeveloped power system such as ours. Demand for electricity
remains largely unresponsive or less responsive to its price as it has
almost become a necessity for the basic need of lighting for the habitual
customers. In fact some studies have shown that even the domestic
customersarewilling to pay much higher pricesfor uninterrupted supply
(Upadhyay 1996, 2000). At the same time, energy consumption
commands a substantially lower budget share due both to lower unit
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price and to low consumption level. Thus for example, the share of fuel
and power in the total private final consumption expenditure in the
domestic market (at current prices) in Indiain 1997-98 wasjust 3.29 per
cent; and el ectricity consumption accounted for only 0.68 per centinthe
total. In 1980-81 and 1990-91, the share of fuel and power was 4.64 and
4.52 per cent respectively, and that of electricity, 0.40 and 0.62 per cent
respectively* . The growth in el ectricity consumption has not been strong
enough to facilitate a pronounced rate of substitution for other fuels,
especidly, the traditional one, kerosene oil. The percentage share of
electricity inthe private final consumption expenditure on total fuel and
power grew from 8.63 per cent in 1980-81 to 20.57 per cent in 1997-98,
marking an average annual compound growth rate of 5.24 per cent, while
that of kerosene oil fell from 15.22 per cent to 10.5 per cent only over
the same period at a decay rate of (-) 2.16 per cent per annum. Thisin
turn suggests avery weak marginal rate of substitution of electricity for
kerosene ail (or elasticity) of just about (-) 0.40; i.e., one percentage
increase in the share of electricity consumption expenditure could on an
average substitute for (or induce afall of) 0.4 percentage in the share of
kerosene oil consumption expenditure. In short, electricity could not
yet make an effective inroad upon the economic lifein Indiain general
to the extent it should have done.

For a more concrete example, let us consider the case of the
connected consumersthemselves. The per capitael ectricity consumption
of the connected domestic customers (that made up about 75 per cent of
the total customers) in Indiain 1995-96 was 772.32 units at an average
rate of Ps. 95.94 per unit (for 18 State Electricity Boards), thusgivingin
general an average per capita electricity consumption expenditure of
Rs. 740. 97 (or, Rs. 61.75 per month) — only 7.04 per cent of the per
capitaincome (of Rs. 10524.8) of that year. In the case of Kerala State,
the electricity consumption per (electrified) domestic consumer in 1997-
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98 was 953.72 unitsat an averagerate of Ps. 76.96 per unit, that indicates
an average domestic consumption expenditure of Rs. 733.99 (or Rs. 61.66
per month) on electricity. The domestic sector that made up about 75 per
cent of thetotal customers nearly consumed 50 per cent of the electricity
soldin Keralain that year. In general, the consumption of electricity per
connected consumer in Keralain 1997-98 was 1480.71 unitsat an average
rate of Ps. 123.74 per unit, giving an average electricity consumption
expenditure of Rs. 1832.16 (or, 152.68 per month) —only 15.35 per cent
of the per capita income (of Rs. 11936) of that year. Similarly, as a
substantial share of residential and commercial electricity consumption
goes to serve the basic need of lighting which is fairly unresponsive to
income rather than to more income elastic, luxury end uses, power
demand remains less income elastic also to this extent. Moreover, the
whole edifice of demand analysis crumblesto dust in an encounter with
power cuts and load shedding, that restrict actual consumption to
availability rather than to actual requirement which is the long run
experience of Kerala.

Wethus seethat the economic rel ationship demand ishypothesised
to have with (per capita) income and unit price is weak and hence
unwarranted in the case of an underdevel oped power system such asin
India/Kerala. The sameistrue for the role of the demographic variable
viz., population too in power demand analysis. As annual population
figuresare only interpolated ones, they might contain asystematic pattern,
causing residual serial correlation that might not be therein the original
data; using these datathusinvolvesanalytical problems. Moreover, since
in a less developed power system, electricity connection remains
inaccessibleto alarge section of the population®®, number of consumers,
instead of population, must be accepted as a more direct and right
determinant. The growth of demand for power is generally assumed to
be determined by the growth of humber of (connected) consumers and
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that of intensity of their power consumption (i.e., el ectricity consumption
per customer), as a so the interaction between these two factors®.

Till the turn of the Eighties, Kerala had apparently been a power
surplus state, exporting power to neighbouring states. Since the drought
year of 1982-83, unprecedented power shortage has become a part of
life in the state. Recurring drought coupled with inadequate installed
capacity has thus unleashed a reign of power cuts and load shedding,
constraining the actual demand down®. Reliance on past demand data
for forecasting purposes thus becomes grossly erroneous and highly
questionable. If some measurement of these shortages is possible to be
made, the constrained demand can be adjusted accordingly to arrive at a
probable measure of unsuppressed demand, which in turn can be used
asdata base for forecasting, subject to the unit root constraints (unlessit
contains any induced pattern). One method is to assume first that when
restrictions are imposed on consumers, their level of consumption is
held at some fraction of their consumption during an earlier base period.
Then the shortfall in supply equal to these percentage restrictions can be
found and inflated by afactor that reflects suppressed growth in demand
sincethe base period and theimpact of unscheduled load shedding. This
in turn can be used to adjust the suppressed demand data (World Bank
1979: 13). Another method uses as demand inflative factor, the fraction
of customers affected by load shedding during peak period and thus
deprived of chance to contribute to peak period demand. The main
problem with all such methods is the non-availability of accurate data
and information.

4, Conclusion

The results of the present study signifies that the earlier works
bothin professional andin academic circleson electricity/energy demand
analysis and forecasting, without accounting for non-stationary,
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integrated, behaviour of the time series they used, must have involved
misleading results of spurious regression and of inconsistent and less
efficient estimates. That these econometric practices lacked analytical
soundnessand intellectual integrity isevident inthe utter neglect of model
adequacy diagnostic checking, the indispensable primary stage in
significance evaluation of any regression mapping. Just taking for granted
the assumptions underlying a model, without an examination of its
empirical significance, using available techniques, amounts to gross
negligence, if not sheer gloss. At least these two fundamental flaws,
viz., not caring for model adequacy diagnosis and not allowing for non-
stationarity in the time series data, detract the whole value from these
studies. The examples in the first part of our analysis illustrate the
significance of our scepticism on this count.

A third strainin our scepticism about the earlier studiesin genera
relates to their efforts of correlating the less correlatables. In an
underdeveloped power system like ours, plagued with long-run
constraints of inadequate and unreliable supply, electricity consumption
remains an input too insignificant to our economic lifeto be analysed in
the framework of some macroeconometric ‘causality’ models, as is
usually donein the context of advanced systems. The second part of our
analysisin terms of cointegration and Granger-‘ causality’ confirmsthis
at least in the case of Kerala power system. Electricity consumption in
the State, coupled with the usually selected ‘causatives' of number of
consumers, per capitaincome and averageprice, al being 1(1) variables,
failsto be explained in a cointegrating spacein any combination. All the
linear combinations examined turn out to be still non-stationary. Further
analysis for identifying some temporal lead-lag relationship (Granger-
‘causality’) among them in terms of their annual growth rates, found to
be stationary, again draws blank. These two unusual results are a potent
pointer to the badly constrained electricity consumption in an
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underdeveloped system, devoid of itsinherent growth mechanism (even
from the number of customers itself). The general evolution of the
economy may have dragged it up along some of itstrend.

Demand forecasting in such contexts becomes highly uncertain.
To the extent that the demand forecast has nothing to do with the capacity
expansion planning on a bounded budget as well as with the actual
materialised capacity additionsin the system, the very exercise becomes
futile, except as some routine liturgy. The widening gaps between the
actual consumption and the forecast levels (even with the revised lower
ones of the 15" APS or of the KSEB-State Planning Board), in the last
few years in Kerala prove this point. Accurate demand forecasting is
relevant aswell as essential only in agrowing system under an efficient
management directed by agovernment of determined political will. This
notwithstanding, forecasts under such circumstances, however, do serve
a good purpose of quantifying (through the gap between forecast and
the actual) the unsatisfied demand, the extent of the shortage.

All the above results and implications are based on the linearity
assumption. However, ‘ economic theory is often non-linear’ (Barnett et
al. 2000: 1). Non-linearities are encountered when, for exampl e, capacity
constraints restrict generation and disequilibria persist due to rationing,
the circumstances very much true for our power system. In the presence
of non-linearity, (of, say, structural breaks) tests most often reject
parameter constancy, as the results in Tables 1 and 2 indicate. In this
paper, however, we have not considered testing for the existence of non-
linearity in the data series; yet it adds to our scepticism about the earlier
studies in that they did not account for possible non-linearity problem
too.

As acorollary to the above implications of our results, it is high
time we questioned the inappropriate, pedantic, practice of linear
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regression mapping for trend extrapolation not only for the unit root
problems, but also when similar results can be generated by means of
much simpler methods, for example, growth rate based projections™.
Useful short-term projection can be had from simple annual growth rates
(percentage deviation over previous year) of electricity consumption.
The method can be modified by accounting for the effect on consumption
of possible growth of the direct causatives such as number of consumers
and connected load. Below we suggest one of such models:

InC =¢_ r,+InC

wheree_, =AInC/AInN istheelagticity of consumption (C) with respect
to number of consumers (N) or consumption intensity factor and r is
the growth rate of N. The aboverelationisin fact anidentity only®?. The
model can be modified to include the effect of connected load (of
electrical appliances) aso by rewriting &, as €., = &, €, Where g_ is
the consumption intensity with respect to connected load and ¢ isthe
load intensity of the customers. Moreover, the expression resembles the

‘explained’ part of arandom walk with drift.

Consumption intensity of the power customers in general in the
State was quite elastic (much more than unity) in normal years. It even
went up to more than 2.5 during the two years of 1966-68 when the
Board became liberal in giving new connections following the
commissioning of the Sabarigiri project, and more than threein 1984-85
and 1988-89 immediately after the ‘crashes’ of 1982-84 and 1986-88.
Theseyears saw great leapsin electricity consumption (the growth rates
being between 20— 33 per cent over the previousyear) of afast-growing
number of customers. However, as energy export picked up, the
consumption elasticity fell below unity; the ‘informal’ constraints on
internal electricity use, covertly imposed in order to boost export show,
continued till the drought year of 1982-83; growth in new connections
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was a so checked during most of these years. Once the export frenzy has
subsided, consumption now grows subject only to the combined
constraints of inadequate capacity and monsoon failure, eased to some
extent by heavy imports. And the consumption elasticity in the recent
years has been well above 1.5, the growth in new connectionsbeing 6 to
8 per cent.

Using these constrained rates (&, = 1.5 and r = 0.07), the supply-
constrained power consumption in the Statein 1999-2000 would be 9952
MU over the previous year's 8960 MUS2. This implies a maximum
demand of 1893 MW at 60 per cent load factor, which, accounting for
18 per cent loss factor (as at present), entails an available capacity of
about 2234 MW. The total installed capacity of the State is reported to
be about 2343 MW only.

In concluding, we recap that the simpleis often safe.
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Notes

1 “Everything is not good simply because it is old; no literature
should be treated as unworthy simply because it is new. Great
men accept the one or the other after due examination. [Only] the
fool has his understanding misled by the beliefs of others.”

2 In fact this important stage in regression analysis is entirely
overlooked and skipped in genera. It is just assumed that the
residual whiteness assumption is satisfied by the model
considered, without empirically verifying for its non-violation,
except in some ARIMA modelling.

3 Econometric ‘ causality’ isacontentious term. Can econometrics
explain‘causality’ (inthe sensethewordisgenerally understood),
instead of mere ‘association’ among variables? For example,
Edward Leamer and others prefer ‘ precedence’ to ‘causality’, in
the context of Granger-‘causality’ that explains temporal lead-
lag relationship between two variables. On Granger-‘ causality’
Pagan (1989) remarks: ‘....... it was one of the most unfortunate
turnings for econometrics in the last two decades, and it has
probably generated more nonsense results...” Hence our use of
guotation marks enclosing ‘ causality’ .

4 A number of computer software packages of energy planning
modelsare available at present for energy demand forecasts, such
as LEAP (Long range Energy Alternative Planning), BEEAM-
TEESE (Brookhaven Energy Economy Assessment model-TERI
Economy Simulation and Evaluation), MEDEE-S, ELGEM, etc.

5 A sequence u(t) , t = 0, is white noise process if it possesses a
constant spectral density function. Thus awhite noise processis
astationary processwhich hasazero mean and constant variance
and is uncorrelated over time. It istherefore necessarily second-
order (i.e., covariance-) stationary, and if u_ is normally
distributed, itisstrictly stationary aswell, sincein thiscase higher-
order momentsare al functions of thefirst two. Also see Granger
and Newbold, 1977: 51.
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Thiscorrespondsto Box-Pierce Q statistic (Box and Pierce 1970),
but with a degrees of freedom correction (Ljung and Box 1978),
and has more powerful small sample properties than the Box-
Pierce Q statisitic.

Hendry and Doornik (1999) remark: “ ... most testsal so have some
power to detect other aternatives, so rejecting the null does not
entail accepting the alternative, and in many instances, accepting
the alternative would be a non sequitur” (p.187). “Perhaps the
greatest non sequitur in the history of econometrics is the
assumption that autocorrelated residuals entail autoregressive
errors, as is entailed in ‘correcting serial correlation using
Cochrane-Orcutt’” (p. 131).

Remember the solution of a homogeneous first order difference
equationy, =py,, isgivenbyy p'. Thetime path of the process
converges, persists (in oscillation) or diverges (explodes)
according astheroot |p| islessthan, equal to or greater than
unity.

The mean of y, isE(y) =ZE(u) =0, variance of y isvar(y,) =
Zvar(u) =to? fori=1,2,.,t and autocovariancesfor lagk are
cov(y,y,,) = E{Zu zu,,) = (t—Kk)o? functionsof time.

Seefor references on such modelling, Nelson and Plosser (1982).

Thisiswhy arandom walk with drift can be represented interms
of a simple forecasting model, where the forecasts (trend at)
increase linearly with time and the forecast error variance (to %)
increasesinfinitely.

Thisfollows from the classic result of Frisch and Waugh (1933)
that including atime trend in aregression is equivalent to first-
detrending the variables by regressing them individually ontime.

Thisis known as Bhargavatype formulation for unit root testing
(Bhargava 1986) that can dispense with anumber of problemsin
interpreting thetest results. Inthe original unit root tests developed
by Dickey (1976), Fuller (1976) and Dickey and Fuller (1979),
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three functional forms of simple autoregression with and without
constant or time trend are considered for testing the null p = 1
against the alternative | p | < L:

yt =a + Bt + pyt_1+ ut’ (1)
yt =a + pyt_1+ ut’ (2)
y1 = pyt_1+ utl (3)

The parameters in the first two functions have different
interpretations under the null and the alternative (Schmidt and
Phillips 1992). In (1), under the unit root null, o and 3 represent
coefficients of t and t?in a quadratic trend, while under the
aternative, they represent the level and the coefficient of tina
linear trend. Similarly in (2), under the null hypothesisa represents
the coefficient of t in alinear trend, whereas under the alternative,
thereisnotrend, andy, isstationary around a /(1 - p). Bhargava-
type formulation, which impliesthat 3 =0, if p =1 in (1) and
a =0if p =1in(2), does not suffer from such problems.

But also see Dickey and Pantula (1987).

A trend or constant is included in these models, since most
economic variablesshow atrendin linewith the general evolution
of the economy.

Note that DT isin fact an interaction term, the product of the
dummy variable (DU ) and trend ( t).

If there are morethan two variables, the set of 3 valuesiscalled
the cointegrating vector. Ingeneral, if bothy, and x are(d), then
they are CI(d, b) if u =y, - Bx, isl(d—b), withb>0.

The DW statistic is given by DW = Z(u, - u,,)¥% u,?, where the
estimated residual values are used, and the summations are from
2toninthenumerator and 1 to nin the denominator. If u, isi(1),
the DW statistic will be closeto zero, since the numerator of DW
isthesum of squaresof (n—1) whitenoiseterms(asu,=u,, +e),
and the denominator is the sum of squares of n terms, each of
which, through repeated substitution, can bewritten asaninfinite
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number of white noiseterms. Hencethetest isto seeif CRDW is
significantly greater than zero. If it exceeds the critical value,
then u, is1(0) and y, and x are cointegrated.

Remember the datawe use here are the ones actually constrained
by power shortages — power cuts and load shedding. It goes
without saying that reliance on and use of these datafor forecasting
purposes just involves high risk of errors of underestimation.

As indicated by the high p-values associated with the low
normality test statistic values — thus the residuals are distributed
with statistically small skewness and excess kurtosis.

LM test and White (F-) test are not avail able for the non-linear k-
transformation model; AR(1) correction also is not possible for
this model. And for the quadratic model, White (F-) test could
not be computed due to near singularity of the matrix.

Thereisareversepossibility also, residua autocorrelation causing
ARCH effect (Engle, Hendry and Trumbull 1985), and this may
be due to the difficulty in interpreting results when several tests
reject together.

AR(1) correction is not possible for the non-linear k-
transformation model. Also see foot note 7.

It should be pointed out, however, that it may not be appropriate
to consider again DW statistic for the efficacy of the AR(1)
correction; see the note by Kenneth White in his SHAZAM (p.
86).

Durbin-hinthiscaseis0.414, much|essthan the5 per cent normal
critical value.

It should be noted that the indicated significanceisonly valid in
the absence of non-stationary regressors, which is not the case
here.

Note that all the long-run elasticities implied by the modd, if
valid, are much less than unity.
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Remember that these autoregressive errors, in the presence of
lagged dependent variable asregressor, leave the OL S estimators
inconsistent.

It should be noted that the parameter estimate of the logarithmic
AR(1) model being close to unity and the residuals being white
noise, we have a random wak model with drift. The unit root
tests will also provethis.

Note that our findings compare well with those of Nelson and
Kang (1984) who discuss misleading results resulting from
estimating relationships among under-differenced series.

Applying unit root (DF) test to the residuals from Model 7,
(logarithmic AR(1) model), the t-statistic obtained is —5.741
against the critical value of —3.607 at one per cent significance
level, that thus rejects the null of unit root in the noise term.
Similarly, for the semi-log trend model (9) withAR(1) correction
and the short run consumption model (10), thet-statistic estimated
is—5.670 versusthe critical value of —3.607 at one per cent level,
(same estimate for both the models, as they are equivalent),
reconfirming the stationarity of the residuals.

Nelson and Plosser (1982: 141) state that ‘the tendency of
economic time series to exhibit variation that increases in mean
and dispersion in proportion to absolute level motivates the
transformation to natural 1ogs and the assumption that trends are
linear in the transformed data’ .

The residuals from the models are strictly white noise for these
lags with levels and with differences. Note that the unit root null
might be rejected for some other lags, since the results of
univariate ADF testing are sensitive to the lag length in the
regression model for the tests. Hence the significance of achoice
of optimum lag length, that is to satisfy the residual whiteness
assumption.

This DW-statistic for the level of avariableisnot to be confused
with the cointegrating regression Durbin-Watson (CRDW)
statistic of the residuals; see foot note 18.
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Chow tests for structural stability carried out on the logarithms
of the series confirm the following breaks: 1983-84 and 1987-88
in consumption; 1979-80 in number of consumers; and 1985-86
in per capitaincome. However, since the Chow test is meant for
only stationary variables, its results cannot be relied upon in our
case, and they are not reported.

The so-called * Gulf boom’ of increasing remittances of the non-
resident Keralites from the Gulf has triggered an unprecedented
growth of the housing sector and encouraged an increasing
demand for electricity intensive appliances in Kerala especially
since the mid-seventies. Number of housesin the el ectrified group
must also have increased (in absolute terms) as a result of the
social security schemes of the government (IRTC and IEI,
Exercisesfor Integrated Resource Planning for Kerala: End-Use
Analysis—An Empirical Study: Technical Report | — Electricity,
1996, Chap. 3, p.33). Though the serious power shortage situation
has however entailed restrictions on providing new connections
since 1982-83, energy consumptionintensity in relation to number
of customers aswell as connected |oad has been on the increase.

See the multivariate econometric model 2.

The first row (null of r = 0) maximum eigenvalue and trace
statistics are respectively 27.83 and 43.16, and the former is
significant, though marginally, at 5 percent level, but thelatter is
not. Dickey, et al. (1991) recommend the maximum eigenvalue
test asmorereliablethan thetracetest especially in small samples.
Thisthen suggests that there exists one cointegrating vector (cv)
of long-run relationship among thefour variables, if wedisregard
small sample bias. The relationship of interest in our case isthat
of eectricity consumption (C) with other variables. The estimated
cv of thisrelationship (with normalised coefficients representing
long-run elasticities) isgivenby C=0.734 N —2.941 AR-0.474
PCI, where al the variables are in logarithms. In view of the
wrong sign of PCI (aswell asthevery high elasticity of AR against
actual experiences), wefail to give acons stent economic meaning
to this cv, and conclude against identifying the relationship of



39

41

42

58

interest. Any other relationship among the variables implied in
the existence of acv is of no interest to us now.

InTable8, inthelast model of C with N, notethat both the statistics
in the second row, Ho: r < 1, are significant at 5 per cent level.
However, since the first row, Ho: r = 0, cannot be rejected, we
cannot consider the second row. That is, if thefirst (row) statistic
isnot significant, then r is selected as zero (Doornik and Hendry
1997: 224-225).

Remember that by the Granger Representation Theorem (Granger
1983), if a set of variables are cointegrated, then there exists an
error correction representation (and vice versa).

Note the null hypothesis that elctricity consumption (C) growth
rates do not Granger-‘cause’ N growth rates can be rejected at 5
and 10 per cent significance levels respectively for lags4 and 5,
and the same is so for AR growth rates at 7 per cent level for lag
3. However, in view of the persistence of non-rejection for all
other lags, we cannot consider such isolated results.

The results are reported for lags up to 6 for space limitation.

For example, in 1995-96, the percentage share of fuels, eectricity,
and lubricants consumed in the ASI factory sector of Indiain the
value of total inputs was 9.56 per cent only and that in value of
products, 7.81 per cent; in Kerala, these were respectively 5.77
and 4.72 per cent only (Government of India 1998a: 85-86).
During the 90s (1991-92 to 1997-98), power and fuel expenses
of the whole manufacturing sector in India remained at about 6
per cent of the net sales and at about 7.5 per cent of the total
production costs (CMIE 1999).

The percentage share of the unregistered firms in the
manufacturing sector’s contribution to net domestic product (at
current prices) in Indiain 1997-98 was 35.4 per cent; in 1970-
71, 1980-81 and 1990-91, it was respectively 46.7, 46.3 and 39.1
per cent.
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An apt exampl e of mechanical adoption and use of econometrics
against its grain usual in the academic circles is Pillai (1981)'s
Cobb-Douglas production function approach to Kerala's hydro-
electric power system, with capital and labor as*variable’ inputs.
It is common sense that labor is not at al a variable factor of
production in hydro-electric power generation, it being a part of
sunk capital.

The latter (price) equation need not be confused with the usual
supply function; many studies (for example, Halvorsen 1975)
assume electricity supply in this context as fixed. However, the
uniquetechnical characteristic of electricity that it cannot be stored
initsoriginal form and hence must be generated the moment it is
demanded stands to do away with the usual demand-supply
distinction. This also makes the question of identification
irrelevant. The earlier studies in India on electricity demand
analysis have ignored the question of identification, as pointed
out by Dr. Indrani Chakraborty; no reason is provided as to why
the equation estimated as for demand may not be a supply
function. It should however be noted that a distinction between
demand (= supply) and capacity provision ispossible here except
in power shortage situations.

Government of India, National Accounts Statistics, different
i ssues.

Nearly 50 per cent of the householdsin Kerala (and nearly 60 per
centintherural areas) remain unelectrified (asper 1991 Census).
This problem a so hauntsthe regressor of per capita Stateincome
that includes the share of the unelectrified households al so.

SeePillai (1981: 81—82); Henderson (1975) uses sectoral output
in the place of number of consumers. Another immediate factor
of influenceisconnected load, thetotal of therating (in kil owatts)
of all the electricity using appliances installed on a consumer’s
premises. This also may be considered along with the relevant
intensity of energy consumption (electricity consumption per
kilowatt (KW) of connected load) and the interaction between
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the two. However, number of customers (N) is more immediate
and direct than connected load (CL) in determining energy
demand, as not only is N in fact the causative of CL, but also a
customer may not use all his electric devices simultaneously or
continuously; there are times, on the other hand, when all the
consumers together exert demand pressure on the system. There
is yet another significant reason. A growing power system is
expected to become more and more electricity intensive in that
its CL grows faster than N (so that the electricity intensification
factor, i.e., connected load per customer (CL/N), increases over
time). Despite the restrictions imposed on providing new
connections since 1982-83, the domestic, commercial, and LT
industrial consumersin Keralahave behaved in the expected line,
becoming more electricity intensive (in terms of appliances
installations), but the HT-EHT industry and ‘ others' (agriculture,
public services, licensees, etc.) havenot. This surprising tendency
of afaster decaying electricity intensity in the State’'s HT-EHT
industrial and agricultural sectors has overshadowed the normal
growth in the other sectors and been reflected in the aggregate,
the growth of CL trailing behind that of N.

Even during the ‘surplus’ period, it can be seen, the internal
consumption was constrained in order to boost the KSEB’s export
extravaganza.

Note that the projections from semi-log (i.e., exponential) trend
extrapolation model and simple and logarithmic AR(1) models
arein fact (constant) growth rate based ones.

Thisfollowssincer, =AInN. Note that the rel ation also amounts
to one period (compound) growth expression: C, = C _ (1+r), where
risthe compound growth rate of consumption and (1+r) = exp(r,),
wherer_ = AInC.

These rates imply a consumption growth rate of about 11 per
cent; the KSEB anticipates an annual growth rate of 10 per cent
in power consumption at present.
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Table1. Estimation Resultsof the Forecast Models— Period ;: 1957-58 to 1998-99
1. Linear Trend : Consumption = f (Time)

Estimate t-vaue | AdjR? F-vaue | DW statistic
Constant -899.54 -3.76 0.895 348.62 0.157
Time 181.02 18.67 Parameter instability : 3.159**
Stimulation Error Analysis
TIC BP VP cP
0.099 490E-17 | 0.027 0.973
Residual Analysis
Normality (x?) Skewness Kurtosis SD
3.35(0.1870) 0.681 325 752.21
Autoregression (F) | Heteroscedasticity (F) |IARCH (F) RESET (F)
30.03 9.11 12.95 18.38
© (0.0006) © ©
2. Quadratic Trend: Consumption = f (Time, Time Squared)
Estimate t-value | AdjR? F-value | DW dtatistic
Constant 725.61 4.68 0.982 1088.1 0.706
Time -40.595 -2.44 Parameter instability : 2.371 **
Time? 5.154 13.75
Stimulation Error Analysis
TIC BP VP cP
0.041 8.05E-16 | 0.004 0.996
Residual Analysis
Normality (x?) Skewness Kurtosis D
0.631(0.7294) -0.056 3.59 311.11
Autoregression (F) | Heterosced asticity (F) |ARCH (F) RESET (F)
10.94 ++ 139 10.70
0) (0.2548) (0.0002)
3. Semi Long Trend: Consumption =f (Time)
Estimate t-value | AdjR® F-value | DW dtatistic
Constant 6.082 141.94 0.977 17737 0.317
Time 0.073 42.12 Parameter instability :3.437 *
Stimulation Error Analysis
TIC BP VP cP
0.0086 2.10E-12 | 0.0056 0.9%4
Residual Analysis
Normality (x?) Skewness Kurtosis SD
1.44(0.4864) 0.119 212 0.135
Autoregression (F) | Heterosced asticity (F) [ARCH (F) RESET (F)
10.34 10.14 5.69 13.28
© (0.0003) © ©




4. k-kransformation (k=0.5) : Consumption = f (Time)
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Estimate t-value | AdjR? F-value | DW statistic
Constant 7.26 3.67 0.973 14795 0.487
Time 1.937 31.53
Stimulation Error Analysis
TIC BP VP CP
0.05 0.017 0.0074 0.976
Residual Analysis
Normality (x?) Skewness Kurtosis SD
2.08(0.3541) -0.29 3.92 377.14
Autoregression (F) | Heterosced asticity (F) [ARCH (F) RESET (F)
+ + 2.16 +
(0.0845)
5. Firgt-order Auto-regressive: C =f (One period lagged C)
Estimate t-value | AdjR? F-value | DW statistic
Constant 15.296 0.22 0.987 3087.1 1.837
C. 1.068 55.56 | Durhinh: 0.533
Parameter instability : 1.149*
Stimulation Error Analysis
TIC BP VP CP
0.034 1.33E-14| 0.003 0.997
Residual Analysis
Normality (x?) Skewness Kurtosis SD
17.50(0.0002) -0.387 6.11 260.94
Autoregression (F) | Heterosced asticity (F) [ARCH (F) RESET (F)
7.25 10.82 2.78 0.076
(0.001) (0.0002) (0.0355) (0.9132
6. Logarithmic Auto-regressive: InC =f (InC,_)
Estimate t-value | AdjR? F-value | DW statistic
Constant 0.231 2.24 0.993 5327.46 1.873
InC, 0.9799 7299 | Durhinh: 0414
Parameter instability : 0.216
Stimulation Error Analysis
TIC BP VP CP
0.005 9.99E-14| 0.002 0.998
Residual Analysis
Normality (x?) Skewness Kurtosis SD
1.37(0.5039) 0411 2.64 0.075
Autoregression (F) | Heterosced asticity (F) |ARCH (F) RESET (F)
145 0.215 0.336 0.369
(0.2322) (0.8073) (0.8872) (0.6936)




7. Linear Trend with AR (1) correction : Consumption = f (Time)
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Estimate t-vdue | AdjR? F-value | DW statistic
Constant -1983.66 -0.19 0.987 1510.03 1.810
Time -100.570 -0.25 Parameter ingtability : 1.545*
AR (1) 1.045 16.40
Stimulation Error Analysis
TIC BP VP CP
0.034 495E-11| 0.003 0.997
Residual Analysis
Normality (x?) Skewness Kurtosis sD
14.81(0.006) -0.334 5.87 260.4
Autoregression (F) | Heterosced asticity (F) |ARCH (F) RESET (F)
6.95 8.78 3.64 335
(0.0002) (0.007) (0.0109) (0.0457)
8. Quadratic Trend with AR (1) correction: =f (Time, Time Squared)
Estimate t-vaue | AdjR? F-value | DW statistic
Constant 1413.96 1.80 0.989 1162.47 1.625
Time -110.12 -1.55 Parameter ingtability : 2.185*
Time? 6.65 472
AR (1) 0.709 4.99
Stimulation Error Analysis
TIC BP VP CP
0.031 5.60E-13| 0.003 0.997
Residual Analysis
Normality (x?) Skewness Kurtosis D
11.34(0.0034) -0.481 5.39 239.37
Autoregression (F) | Heterosced asticity (F)| ARCH (F) RESET (F)
5.76 ++ 4.99 3.67
(0.0007) (0.0019) (0.0350)
9. Semi-long Trend wiht AR (1) correction : InC =f (time)
Estimate t-vdue | AdjR? F-value | DW statistic
Constant 6.25 39.54 0.993 2927.36 1.766
Time 0.068 12.82 Parameter ingtability :0.810
AR(1) 0.798 9,540
Stimulation Error Analysis
TIC BP VP CP
0.004 113E-13| 0.002 0.998
Residual Analysis
Normality (x?) Skewness Kurtosis sD
0.066(0.9674) 0.095 3.05 0.07
Autoregression (F) | Heterosced asticity (F) |ARCH (F) RESET (F)
136 0.363 0.202 0.091
(0.2655) (0.6977) (0.9591) (0.9132)




10. Partial Adjustment (Short-run Growth Rate) Model : InC =f (InC_, Time)

Estimate t-vaue | AdjR? F-value | DW statistic
Constant 131 261 0.993 2927.36 1.766
Time 0.0136 220 Durbin h: 0.887
InC,, 0.798 9.54 Parameter instability :0.810
Stimulation Error Analysis
TIC BP VP CP
0.004 113E-13| 0.002 0.998
Residual Analysis
Normality (x?) Skewness Kurtosis sD
0.066(0.9674) 0.095 3.05 0.07
Autoregression (F) | Heterosced asticity (F) |ARCH (F) RESET (F)
136 177 0.202 2.36
(0.2655) (0.1562) (0.9591) (0.1082)

Note:
1. * and‘'**’ indicate statistical significance at 5 and 1 per cent respectively.
2. +=notavailablein non-linear |least squares
3. ++=near singular matrix
4.  Figuresin brackets are the corresponding p-values.
5. C= Electricity Consumption in the State (Million Units)
6. Adj. R-sguared = Adjusted R-squared;
7.  TIC=Theil inequality coefficient
8. In = Natural log
9.  BP=Biasproportion; VP = Variance proportion
10. CP = Covariance proportion
11. AR(1) = Estimate of first order auto-regression coefficient
12.  Parameter instability = Joint (F-) test statistic for parameter constancy
13.  ARCH (F) = Autoregressive Conditional Heteroscedasticity (F) statistic (5 lags)
14. RESET (F) = Regression Specification Test (F) statistic




Table2. Multi-variable Econometric Models—
Period: 1960-61 to 1998-99
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Model 1. C = (N, PCI,AR)
Estimate t-value | AdjR? F-value | DW statistic
Constant -129.66 -0.23 0.993 1686.1 1.306
N, 1175 18.53 Parameter ingtability : 1.591*
PCI, 1127 423
AR -30.53 -2.30
Stimulation Error Analysis
TIC BP VP CP
0.024 1.64E-14 | 0.002 0.998
Residual Analysis
Normality (x?) Skewness Kurtosis D
14.19 (0.0008) -1.161 483 191.94
Autoregression (F) | Heteroscedasticity (F) | ARCH (F) RESET (F)
3.08 2.64 0.443 344
(0.0233) (0.0340) (08145) (0.0434)
Model 2. InC =f (InN, InPCl , InAR)
Estimate t-value | AdjR? F-value | DW dtatistic
Constant 0.237 0.27 0.990 1266.21 0.635
InN, 0.683 29.61 Parameter instability : 2.501*
InPCl, 0.539 471
InAR, -0.398 -3.26
Stimulation Error Analysis
TIC BP VP CP
0.005 1.03E-13 | 0.002 0.998
Residual Anaysis
Normality (x?) Skewness Kurtosis SD
1.006 (0.6048) -0.048 2.22 0.077
Autoregression (F) | Heteroscedasticity (F) | ARCH (F) RESET (F)
6.08 0.695 0.791 6.95
(0.0005) (0.6552) (0.5652) (0.0029)




Model 3. C,=f (N, PCl, AR, Time)
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Estimate t-vaue | AdjR? F-value | DW statistic
Constant -1261.12 -1.92 0.994 1505.83 1.609
N, 0.876 7.12 Parameter instability : 1.837%
PCl, 1.567 5.37
AR -18.287 -1.41
Time 30.180 2.76
Stimulation Error Analysis
TIC BP VP CcP
0.022 7.54E-15 | 0.001 0.999
Residual Analysis
Normality (x?) Skewness Kurtosis SD
232.32(0.0) -1.22 591 173.47
Autoregression (F) | Heteroscedasticity (F) | ARCH (F) RESET (F)
344 3.03 110 0.457
(0.0147) (0.0129) (0.3821) (0.6373)
Model 4.InC =f (InN,, In PCI , InAR, Time)
Estimate t-vaue | AdjR? F-value | DW statistic
Constant -4.52 -1.73 0.991 1023.51 0.748
InN, 1.040 5.53 Parameter instability : 2.155%*
InPCl, 0.916 407
InAR -0.295 -2.29
Time -0.040 -1.92
Stimulation Error Analysis
TIC BP VP cpP
0.005 256E-13 | 0.002 0.998
Residual Analysis
Normality (x?) Skewness Kurtosis SD
0.652 (0.7219) -0.165 2.46 0.073
Autoregression (F) | Heteroscedasticity (F) | ARCH (F) RESET (F)
4.88 0.756 1.05 7.76
(0.0023) (0.6430) (0.4115) (0.0017)




Model 5. InC =f (InN,, InPCl , InAR InC, )
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Estimate t-vaue | Ad R? F-value | DW dtatistig
Constant -0.004 -0.01 0.994 1476.77 137
InN, 0.301 345 Durbin h: 2.788
InPCl, 0.300 2.83 Parameter instability : 1.445
InAR, -0.217 -2.05
InC, 0.537 450
Stimulation Error Analysis
TIC BP VP CcP
0.004 3.69E-13 | 0.001 0.999
Residual Analysis
Normality (x?) Skewness Kurtosis SD
0.1.65 (0.4379) -0.110 3.26 0.060
Autoregression (F)| Heterosced asticity (F) | ARCH (F) RESET (F)
2.77 0.461 0.0004 5.92
(0.0774) (0.8718) (0.9833) (0.0206)
Note:

**and ‘**’ indicate statistical significanceat 5 and 1 per cent respectively.
C = Electricity Consumption in the State (Million Units)
N = Number of Electricity Consumers

AR = Average Price (Revenue) (at 1981-82 prices)

1

2

3.

4. PCl = Per Capita State Income (at 1980-81 prices)
5

6

Figuresin brackets are the corresponding p-values.
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(Variables in logarithms)
c N AR PCI
1. ADF unit root tests
- Levels(Model 2)
Standard Deviation 0.064 | 0.024 0.088 | 0.029
Skewness 0.054 | 0.343 0.427 | -0.005
Excess kurtosis 0292 | 0.823 | -0.298 | 0.345
Normality (x?) p-value 0.4146 | 0.1323 | 0.4566 | 0.2589
Autocorln LM (F) p-value 0.7832 | 0.3342 | 0.4446 | 0.5325
Heteroscedasticity
White (F) p-value 0.3250 | 0.4613 | 0.4303 | 0.2938
ARCH (F) p-value 0.8302 | 0.1887 | 0.3847 | 0.4882
2. ADF unit root tests
- Differences (Model 1)
Standard Deviation 0.072 | 0.027 0.096 | 0.030
Skewness 0518 | 0.598 0.433 | -0.112
Excess kurtosis 0419 | 0271 | -0.194 | 0.070
Normality (x?) p-value 0.2827 | 0.2528 | 0.4631 | 0.6039
Autocorln LM (F) p-value 0.6162 | 0.4216 | 0.1230 | 0.2229
Heteroscedasticity
White (F) p-value 0.7554 | 0.2437 | 0.9030 | 0.7851
ARCH (F) p-value 0.3148 | 0.3189 | 0.8155 | 0.7904
3. VAR Modd (for 2 lags)
Skewness -0.026 | 0.317 1505 | -1.122
Excess kurtosis 0.138 | 1.218 | -0.2440 | 0.053
Normality (x?) p-value 0.8099 | 0.4368 | 0.4243 | 0.1075
Autocorln LM (F) p-value 0.3787 | 0.0892 | 0.2167 | 0.8150
Heteroscedasticity
White (F) p-value 0.3819 | 0.3996 | 0.3350 | 0.9856
ARCH (F) p-value 0.9169 | 0.4505 | 0.1594 | 0.4559

Vector normality x2=5.189 (0.1744)
Vector autocorrelation F = 1.315 (0.1744)

Vector heteroscedasticity F = 0.476 (0.9991)

Note: Autocorln = Autocorrelation

Figures in brackets are the corresponding p-values.
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DW -Statistic ADF test statistics
for Model 1 Moded 2
Variables Variables (with (with Inference
(inlog) (inlog) constant) | trend+constant
| Levels
1.C 0.0176 -2.146 -2.554 | DS with drift
(0.632)
2.N 0.0088 -2.825 -0.381 | DSwith drift
(0.632)
3.AR 0.919 -2.363 -2.603 | DS with drift
(0.632)
4. PCl 0.0378 1.514 -0.038 | DSwith drift
(0.659)
Il First
Differences
1.C 1.727 | -5.614** -6.042** | Stationary
(0.645)
2.N 0.862 -3.459* -4.957** | Stationary
(0.645)
3.AR 2199 | -7.349** -7.244** | Stationary
(0.645)
4. PCI 1.292 -3.029* -3.684* | Stationary
(0.673)
Note:

1. “*’and"** indicatestatistical significanceat 5 and 1per cent respectively.
2. Inference for the levelsis based on Model 2 and for the differences on

Model 1.

NooA®

C = Electricity Consumption in the State (Million Units)
N = Number of Electricity Consumers

PCI = Per Capita State Income (at 1980-81 prices)
AR = Average Price (Revenue) (at 1981-82 prices)
Figures in brackets are approximate critical values at 5 per cent

significance level (Sargan and Bhargava 1983:Table 1).
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Table5. Perron'sUnit Root Test in the Presence of Structural Break
1. Consumption (C) Break year: 1983-84; Lags 2; TB/T = 0.61.

Trend (t) DU DT C. Critica
Estimate 0.0173 -0.197 0.002 -0.257 value 10%
t-value 1.374 -0.472 0.391 -1.837 -3.95
Residua Analysis
SD | Skewness Kurtosis Normality (x?)
0.063 0.247 3.216 1.512 (0.4695)
Autoregression (F) Heteroscedasticity (F) | ARCH (F) RESET (F)
0.347  (0.7097) 1.487 (0.2123)| 0.031(0.8618)| 0.010 (0.9206)
1. Consumption (C) Break year: 1987-88; Lag 1; TB/T = 0.71.
Trend (t) DU DT C. Critica
Estimate 0.016 -0.011 5.20E-05 -0.223 vaue 10%
t-value 1711 -0.018 0.008 -2.022 -3.86
Residual Analysis
SD | Skewness Kurtosis Normality (x?)
0.070 -0.043 3.159 1.223 (0.5427)
Autoregression (F) Heteroscedasticity (F) | ARCH (F) RESET (F)
2385  (0.1083) 0.775 (0.6407)| 0.134(0.7172)| 0.278 (0.6017)
3. Consumption (C) Break year: 1996-97; Lag 1; TB/T = 0.95.
Trend (1) DU DT C. Critical
Estimate 0.014 -8.792 0.090 -0.208 value 10%
t-value 2.011 -1.742 1.738 -2.191 -3.46
Residual Analysis
SD | Skewness Kurtosis Normality (x?)
0.067 0.081 3.554 2.954 (0.2283)
Autoregression (F) Heteroscedasticity (F) | ARCH (F) RESET (F)
1637  (0.2104) 1.066 (0.4211)| 0.802(0.3771)| 0.315 (0.5783)




4. No. of consumers (N,) Break year: 1979-80; Lags 5; TB/T = 0.50.
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Trend (t) DU DT C., Critica
Estimate 0.021 0.708 -0.008 -0.222 value 10%
t-value 1.944 2.653 -2.482 -2.411 -3.96
Residua Analysis
SD | Skewness Kurtosis Normality (x?)
0.019 0.238 3.977 5.111 (0.0776)
Autoregression (F) Heteroscedasticity (F) | ARCH (F) RESET (F)
1623  (0.2183) 0.431 (0.9312)| 0.272(0.6069)| 0.119 (0.7331)
5. Per capitaincome (PCl,) Break year: 1985-86; Lags 3; TB/T = 0.66.
Trend (1) DU DT C. Critical
Estimate 0.0024 -1.901 0.022 -0.467 value 10%
t-value 1.64 -3.52 3.60 -3.209 -3.86
Residua Analysis
SD | Skewness Kurtosis Normality (x?)
0.022 -0.821 3.664 4.45 (0.1079)
Autoregression (F) | Heteroscedasticity (F) | ARCH (F) RESET (F)
0116  (0.8909) 0.375 (0.9555)| 0.238(0.6299)| 1.893 (0.1806)
Note:
1. Critical values are from Perron (1989 Table VI B).
2. TBIT =ratio of pre-break sample size to total sample size.
3. C= Electricity Consumption in the State (Million Units)
4. N = Number of Electricity Consumers
5. PCI = Per Capita State Income (at 1980-81 prices)
6. Figuresin brackets are the corresponding p-values.



Table 6. Cointegration Analysis
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Cointegration CRDW Augmented Engle-Granger Test
of C with Statistic Lag ADF Critical Vaue
Statistic (10 %)
1. N, PCI,AR 0.635 0 -2.909 -4.034
(0.641) 1 -2.381 -4.040
2 -2.497 -4.046
2.N, PCI 0.618 0 -2.926 -3.618
(0.661) 1 -2.910 -3.623
2 -2.785 -3.627
3.N,AR 0.448 0 -1.903 -3.606
(0.661) 1 -1.678 -3.610
2 -1.503 -3.614
4. AR, PCI 0.109 0 -1.801 -3.618
(0.661) 1 -1.256 -3.623
2 -1.697 -3.627
5. PCI 0.072 0 -1.738 -3.157
(0.681) 1 -1.125 -3.160
2 -1.656 -3.164
6.AR 0.072 0 -1.360 -3.149
(0.681) 1 -1.149 -3.152
2 -1.305 -3.154
7.N 0.483 0 -2.133 -3.149
(0.681) 1 -2.421 -3.152
2 -1.834 -3.154

Note:

1. All variables are in logarithms.

2. CRDW = Cointegrating Regression Durbin-Watson statistic; figuresin
brackets are approximate critical valuesat 5 % significance level (Sargan
and Bhargava 1983: Table 1).

3. C= Electricity Consumption in the State (Million Units)

4. N = Number of Electricity Consumers

5. PCI = Per Capita State Income (at 1980-81 prices)

6. AR =Average Price (Revenue) (at 1981-82 prices)
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Table 7. Johansen and Jusdlius (J J) Cointegration Tests

1. Variables(inlog): C, N, AR, PCI.
Eigenvalues: 0.529, 0.226, 0.147, 3.8E-06

Null Maximum Eigenvalue Test Trace Test

Ho: Alternative | Statistic+| 95% CV | Alternative| Statistic+ | 95% CV
r=0 r=1 21.81 27.1 r=1 33.83 47.2
r<i1 r=2 7.42 21.0 r=2 12.01 29.7
r<2 r=3 4.60 141 r=3 4.60 154
r<3 r=4 0.0001 38 r=4 0.0001 38

2. Variables(inlog): C, N, PCI.
Eigenvalues: 0.223, 0.174, 0.0015

Null Maximum Eigenvalue Test Trace Test

Ho: Alternative | Statistic+| 95% CV | Alternative| Statistic+ | 95% CV
r=0 r=1 7.83 210 r>1 13.80 29.7
r<1 r=2 5.92 14.1 r=2 5.96 15.4
r<2 r=3 0.046 38 r=3 0.046 38

3. Variables (inlog): C, AR, PCI.
Eigenvalues: 0.399, 0.137, 2.79E-07

Null Maximum Eigenvalue Test Trace Test

Ho: | Alternative | Statistict| 95% CV | Alternative| Statistic+ | 95 % CV
r=0 r=1 15.83 21.0 r=1 20.40 29.7
r<i r=2 457 141 rz2 457 154
r<2 r=3 8.6E-06 38 rz3 8.6E-06 38

4. Variables (inlog): C, N, AR.
Eigenvalues: 0.351, 0.172, 0.068.

Null Maximum Eigenvalue Test Trace Test

Ho: [ Alternative | Statistic+| 95% CV | Alternative| Statistict+ | 95 % CV
r=0 r=1 13.40 21.0 r=1 2144 29.7
r<i r=2 5.86 141 rz2 8.04 154
r<2 r=3 2.18 38 r=3 2.18 38

5. Variables (inlog): C, AR.
Eigenvalues: 0.301, 0.026.

Null Maximum Eigenvalue Test Trace Test

Ho: Alternative | Statistic+| 95% CV | Alternative| Statistic+ | 95% CV
r=0 r=1 11.83 14.1 rx1 12.69 154
r<1 r=2 0.85 38 r=2 0.85 38




6. Variables (in log): C, PCI.
Eigenvalues: 0.145, 9.74E-04
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Null Maximum Eigenvalue Test Trace Test
Ho: Alternative | Statistic+| 95% CV | Alternative| Statistic+ | 95 % CV
r=0 r=1 5.18 141 rx1 521 154
r<1 r=2 0.032 38 r=2 0.032 38
7. Variables (inlog): C, N.

Eigenvalues: 0.169, 0.116
Null Maximum Eigenvalue Test Trace Test
Ho: | Alternative | Statistict| 95% CV | Alternative| Statistic+ | 95% CV
r=0 r=1 6.11 141 rx1 10.17 154
r<i r=2 4.07* 38 r=2 4.07 38

Note: + = Test statistics are with small sample correction.
* = Significant at 5 % level; CV = Critical value.



Table 8. Pair-wise Granger Non-’Causality’ Tests

Null Hypothesis p-values

1.r (C) isnot Granger-' caused’ by
Lags r(N) r(PCl) r(AR)
1 0.975 0.650 0.743
2 0.631 0.939 0.166
3 0.990 0.934 0.350
4 0.962 0.888 0.323
5 0.967 0.864 0.417
6 0.984 0.349 0.577

2. r(C) does not Granger-' cause’
Lags r(N) r(PCl) r(AR)
1 0.190 0.391 0.234
2 0.270 0.414 0.165
3 0.289 0.803 0.068
4 0.049 0.716 0.158
5 0.096 0.461 0.233
6 0.322 0.154 0.418

Note: r refersto growth rates (i.e., first differences of logarithmic
series)
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Aver age Price (Revenue) of Electricity in Kerala (at 1981-82 Prices)
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APPENDIX
1. Unit Root Tests

We have seen that the decision as to whether to difference or to
detrend a time series before proceeding with further analysis depends
upon whether the series is DSP or TSP. This in turn depends, as we
know, upon whether the root of the series p =1 or | p|< 1. Hencethe
significance of unit root tests.

Consider the following model:

yt=a+Bt+pyt_1+ ut’ (1)
where u,is white noise. We consider the following possibilities:

1. When B#0, |p|<1,y, hasalinear trend and henceisatrend-
stationary series.
2. When3 =0,then y =a+py,_,+U,. (2

Here we have two cases:

i) if |[p|<1,y,isadationary series;

i) if p =1,y, isadifference-stationary series with adrift term.

3. Whena =3 =0, theny, =p y,_,+U, (©)]

The two cases here are;

i) if |[p|<1,y,is stationary;

ii)if p =1,y, isadifference-stationary serieswithout drift.

Now subtracting y, , from (3)

Ay =yy,tu, (3.b)
wherey = (p -1). Now, testing the null hypothesisHo: y= 0, in the usua
way is equivalent to testing Ho: p = 1. Similarly, (1) and (2) can be
rewritten as

Ay =a+Bt+yy, +u, (1.b)
Ay =a+yy,+U. (2.b)

Now, in order to find out whether aseries y, has unit root (y, isa
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non-stationary, integrated, process), run the regression (3) and find out
if p =1 statistically, against the one-sided alternative | p | < 1, or,
equivalently, estimate (3.b) and find out if y=0, onthebasisof e.g., the
t-statistic. Dickey and Fuller (1979), however, show that this statistic
does not follow Student’s t-distribution, even in the limit as the sample
size increases infinitely. The distribution of this statistic is known as
(Dickey-Fuller) T (tau) statistic, to distinguish it from the conventional
t-statistic, whose critical valueshave been tabulated by Dickey and Fuller,
and later on extended to a much wider range of sample sizes by
MacKinnon (1990), both through Monte Carlo simulations. The
numerator of this statistic is skewed to theright, being ax?(1) minusits
expectation. Since Prob[x?(1) < 1] = 0.70, the mgjority of this statistic
outcomes are negative. If the estimated t—value is sufficiently more
negative (i.e., less) than the critical value at the chosen significancelevel,
we reject the null of unit root and accept the hypothesis of stationarity.
Thistest is known as Dickey-Fuller (DF) unit root test.

In deriving the asymptotic distributions, Dickey and Fuller (1979,
1981) assumed that the errors u, were iid(0,0% ). However, the limiting
distributions obtained by them cease to be appropriate when the errors
are non-orthogonal (i.e., serialy correlated). Dickey and Fuller (1979)
and Said and Dickey (1984) modified the DF test by means of AR
correction. The new augmented Dickey-Fuller test (ADF) is carried out
by estimating an autoregression of (y, or) Ay, onitsownlagsandy,,
using OLS:

p
Y. =Py, TZB Ay, tu,
i=1
or
p
Ayt:yyt-l + z Bi Ayt-i+ uI’
i=1 4

Wheny=0, p = 1. The(t-) test statistic for the unit root null followsthe
same DF distribution (t —statistic) as above, so that the same critical
values can be used.
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Nelson-Plosser Test for TSP vs. DSP

Nelson-Plosser (1982) approach to unit root testing was asimple
method of mode! selection between TSP (y, = a + Bt + u) and DSP (4Qy,
=a +u) models (whereu, is stationary). However, they approached it as
atest for a nested hypothesis. To test the hypothesis that a time series
belongs to DSP against the aternative that it belongs to TSP, they
employed ADF unit root test, starting with the TSP model with first-
order autocorrelation in errors:

y,=a+Bt+u; u=pu,+e, (5)

(a Bhargava (1986)-type formulation, in which the linear or quadratic
trend problem, discussed above, does not arise).

The nested mode is:

y=a+pt+ply, -a-pt-1)] +e
=9,+ot +py,+ €, (6)

where g isiid(0, 0®) and §, = a(l - p) + pBand & =B (1-p). They
included (in (6)) additional regressors Ay, to correct the possible serial
correlation in the errors, and tested the unit root null Ho: p=1and 3, =
0. (Remember that the value of the constant &, will not affect the
asymptotic properties of the OL Sestimatorsof p and d,, if theregression
includes time as a regressor (see Frisch and Waugh 1933.) In the above
testing procedure, if the unit root null is rejected, y, belongs to TSP,
otherwise, y, belongs to DSP. They found that 13 of the 14 US
macroeconomic time series belonged to DSP.

Other Unit Root Tests

We have seen that significant MA errors require alarge number
of lagged Ay, termsasregressorsin theADF test mode! for AR correction.
Sinceoneeffectiveobservationislost for each extralagged termincluded,
the power of the ADF test is adversely affected. Phillips and Perron’s
(1988) non-parametric unit root test (PP test) isvalid even if the errors
areserially correlated and heteroscedastic. However, thistest has serious
sizedistortionsin finite sampleswhen the data generating process (DGP)
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has significant negative autocorrelationsin first differences (Phillipsand
Perron 1988; Schwert 1989; De Jong et al. 1992). However, Perron and
Ng (1996) suggest some useful modifications of the PP test that solve

this problem.

Thereisavoluminous literature on the theory and practice of unit
root tests, as alarge number of testing procedures have mushroomed
ever sincethe Nel son-Plosser investigation. Seefor formal reviews: Fuller
(1985), Perron (1988), and Diebold and Nerlove (1990); and for simple
expository reviews: Dickey, et al. (1986), and Dolado et al. (1990). With
Sims (1988), a Bayesian approach to unit roots testing also has drawn
much attention; also see De Jong and Whiteman (1991 a, b), Sims and
Uhlig (1991), and Koop (1992). It is interesting to note that there has
followed a fierce interchange between Phillips (1991 a, b) and some
Bayesian critics, Volume 6 (October — December 1991) of The Journal
of Applied Econometrics being fully devoted to this debate.

Double Unit Roots Testing

The unit root test procedure we discussed above has been based
on the assumption that the seriesy, contains at most one unit root, i.e., y,
~1(2). If theunit root null isnot rejected, it may be necessary to find out
whether the series contains a second unit root, i.e., whether y, is 1(2).
Remember, 1(2) implies that the series be differenced twice to make it
stationary. The presence of asecond unit root may betested by estimating
the regression of A%, on aconstant, Ay, ,, and the lagged values of A%y,
and comparing the ‘t-ratio’ of the coefficient of Ay, , with the Dickey-
Fuller critical values. Alternatively, the presence of two unit roots may
be tested jointly by estimating the regression of A%, ony, , Ay, ,, and
thelagged valuesof A%y, and computing the usual F-statistic for testing
the joint significance of y, , and Ay, ,, using the critical values given as
®,(2) by Hasza and Fuller (1979).

However, thefirst of the above procedures using DF critical values
is not justified theoretically, as DF type unit root tests are based on the
assumption of at most one unit root. If, in fact, there are more than one
unit root, the empirical sizeof such testsisgreater than the nominal size,
so that the probability of finding any unit root is reduced. Dickey and
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Pantula (1987) suggest an alternative sequence of testsin thisconnection.
To test the null hypothesis of unit roots against the alternative of one,
estimate the regression of A%, on aconstant and Ay, ,, and then compare
the‘t-value’ of the coefficient of Ay, , withthe T, tablesin Fuller (1976).
If the null isrejected, then wetest the null hypothesis of exactly one unit
root against the alternative of none by estimating the regression of A%y,
onaconstant, y,,, 4y, ,, and comparing the ‘t-ratio’ of the coefficient of
y,, With the T, distribution.

2. Cointegration

In view of spurious regression with non-stationary variables, the
usual conventional time series (Box-Jenkins) analysis of proceeding with
suitably differenced, stationary, variables has gained much attraction.
However, soon thistemptation and trend fell under fire; solving the non-
stationarity problem viadifferencing was equated to ‘ throwing the baby
out with the bath water’, because differencing resultsin ‘ valuable long-
runinformation being lost’. Most of the economic relationshipsare stated
in theory as long-term relationships between variables in their levels,
not in their differences. We need to conserve and utilise in analysis this
long-run information contained in the level variables, and at the same
time, we have to be on the watch for spurious regression of integrated
variables. Both these seemingly irreconcilable objectives could be
achieved by means of cointegration mechanism.

In short, if, in aregression relationship between y, and x,, one of
them is an integrated (stochastic) process (and the other deterministic),
we have acase of spuriousregression; if both variablesare deterministic,
the regression results are valid; but if both the variables are integrated
processes, then the regression is spurious, unless the variables are
cointegrated.

Phillips (1986: 321) shows that the usual least squares theory of
stationary processes actually holds when the limiting covariance matrix
of themodel (y,, x) issingular. Inthiscasethere existsalinear relationship
between y, and x, such that the least squares coefficient estimator is
consistent. This singularity isin fact anecessary condition for (y, x) to
be cointegrtaed.



83

The concept of cointegration was introduced by Granger (1981)
and Engle and Granger (1987), and is used as a statistical property to
describe the long-run behaviour of economic time series.

We have explained earlier that avariableisintegrated if it requires
differencing to make it stationary. If the (non-stationary) series needsto
be differenced d timesto be stationary, then the seriesis said to be 1(d).
If two seriesy, and x botharel(1), theningeneral, any linear combination
of them will aso bel(1); for example, data onincome and consumption
over a long period exhibit strong upward trends, and their difference
(saving) also shows an upward trend. However, an important property
of 1(1) variablesis that there can be some linear combinations of them
that areinfact 1(0), i.e., stationary. Thus, aset of integrated time seriesis
cointegrated, if some linear combinations those (non-stationary) series
is stationary.

Let usdefineu, as.
U=y - th’ )

where both y, and x, are I(1). If u,is1(0), theny, and x, are said to be
cointegrated, denoted by CI(1, 1). Since both the variablesare I (1), they
are dominated by ‘long wave’ components, i.e., they are on the same
wave length. But u,, being 1(0), does not have these ‘long wave’
componentsasthese‘trends iny, and x, cancel out to produce stationary,
1(0), u, (see Griffiths, et al. 1993: 700-702). B is called the constant of
cointegration. (If there are more than two variables, the set of vauesis
called the cointegrating vector.) In generd, if both y, and x, are I(d),
then they are CI(d, b) if u =y, - Bx, isl(d—b), withb> 0.

Thus, if two variables are integrated of the same order (having the
same‘wavelength’), they can be cointegrated. Inthislight, theregression
of these two variables, y, = [ + u, makes sense (is not spurious),
because the variables do not tend to drift apart from each other (i.e., they
move together) over time. This then implies that there is a long-run
equilibrium relationship between them.

A long run equilibrium is defined (e.g., in abivariate case) by the
relationship: y, = Bx.or y, - Bx, =0. Thusu, given above (7) measures
the extent towhich the system (y,, x ) isout of equilibrium and istherefore
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called the *equilibrium error’ (Griffiths, et al. 1993: 701). Hence if both
thevariablesarel(1), then the equilibrium error u, will be 1(0) and it will
rarely drift away fromlong run equilibrium, say, zero, if it has zero mean,
moving closely around (often crossing) the zero mean. These ' crossings’,
called ‘mean-reverting’ imply that equilibrium will occasionally occur
(at least to aclose approximation). If, on the other hand, the variablesy,
and x, are not cointegrated, such that u ~ I(1), it (equilibrium error) will
fluctuate widely with very rare zero-mean crossings, resulting in long-

run disequilibrium (Mills 1990: 271).

Cointegration Tests

We have found that a time series is integrated, if it requires
differencing to make it stationary, and a set of integrated series is
cointegrated, if some linear combination of those non-stationary series
is stationary. Thus, given two variablesy, and X, if they areindeed 1(1)
processes, verified through some unit root tests, asimple method of testing
whether they are cointegrated isto estimatethe* cointegrating regression’:

yt:a+ﬁ>(1+ut1 (8)
and then test whether the residual u, is1(0) or not.

Such residual-based procedures were the earliest cointegration
tests, and Engle and Granger (1987) discusstwo such simpletests of the
implied null hypothesis that y, and x, are not cointegrated, [i.e., u, is
[(1)]. Thefirst test is based on the DW statistic for (8) and tests, on the
null that u, is (1), whether DW is significantly greater than zero using
the critical values provided by Sargan and Bhargava (1983). Engle and
Granger (1987), however, prefer the second test of using the t-ratio on
u,, fromtheregression of Au, onu,, and lagged valuesof Au, inaway
analogous to the unit root (ADF) testing discussed earlier. The DF and
ADF tests in this context are known as Engle-Granger (EG) test or
Augmented Engle-Granger (AEG) test.

Engle and Granger (1987) and Engle and Yoo (1987) provide
critical values of the appropriate distribution, which we denote 7,
obtained by Monte Carlo ssimulations. Phillipsand Ouliaris(1990) obtain
the limiting asymptotic distribution of 7, and provide critical values.
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Since the asymptotic distributions differ according to different trend
variablesin cointegrating regression, they provide critical valuesinthree
parts, i.e., when the cointegrating regression contains no constant (nor
trend), only aconstant, and both aconstant and atimetrend. MacKinnon
(1990) provides an approximation formulafor computing critical values
for all sample sizes, estimated using surface regressions. DF/ADF tests
for unit roots and EG/AEG tests for cointegration are now built into
several econometric software packages (e.g., MICROTSP 7.0,

MICROFIT 3.0, ET, SHAZAM 7.0, etc.).

While Engle and Granger (1987) found the second test to have
more stable critical values, Banerjee et al. (1986) preferred the DW
statistic as its distribution is invariant to nuisance parameters such as a
constant. Engle and Granger (1987) also point out that some seemingly
obvious procedures of estimating the cointegrating parameter are
inconsistent, e.g., regressing Ay, on Ax, and the use of Cochrane-Orcuit
or some other serial correlation correction procedurein the cointegrating
regression.

These single equation methods, however, cannot give us any
indication of the number of cointegration relationships in the system.
Hencethe significance of system (multiple equation) methods. The most
popular system method is the Johansen and Juselius (JJ) tests based on
canonical correlations, involving two test statistics (Johansen 1988;
Johansen and Juselius 1990). The first (trace test) tests the hypothesis
that there are at most r cointegrating vectors, and the second (maximum
eigenvalue test) tests the null hypothesis that there are r cointegrating
vectors against the hypothesis that there are r+1 cointegrating vectors.
Johansen and Juselius (1990) recommend the second test as better.

In the vector autoregression (VAR) model, all the variables are
treated as endogenous, so that

Y, = mY , + e wheree ~iin(0, Q) fordli=1,2,..,p. 9

When the set of series are I(1), the system can be formulated in
terms of first differencesin an equilibrium-correction form as (Hendry,
Pagan and Sargan 1984; Engle and Granger 1987; Johansen 1988;
Banerjee, Dolado, Galbraith and Hendry 1993):
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AY, = S3AY, +yY, +eforali=1,2 .., p-L (10)

The coefficient matrix y is called the impact matrix and contains
information on the long-run relationships among the variables in the
system. When'Y  isl(1), then AY  is(0) and the systemis bal anced only
if yY,_ dsoisl(0). If y has full rank (n), then the vector processY  is
stationary; and if itsrank (r) isequal to zero, y isanull vector and (10)
becomes equivalent to a traditional first-differenced VAR model.
However, with the assumption that Y is1(1), y cannot be full rank; and
rank (y) =r <n.Hencethereexist r cointegrting I(0) linear combinations
of Y. Theimpact matrix can then be written as y=ap’ , where a and
B are (n x r) matrices of rank r and B' Y, comprises r cointegrating
stationary relations inducing the I (0) system:

AY, = 3AY, +a(BY,)+eforal i=12 ..,p-L

Johansen (1988) and Johansen and Juselius (1990) have derived
the likelihood ratio test to determine the cointegrating rank (r) of y. The
null hypothesis that there are at most r (i.e., 0 < r < n) cointegrating
vectors (cvs) istested using the trace test with the statistics:

Trace=-TZlog(1-A), fori=r+l,....,nand r=0,1,...,n1,

where A, A, ..., A, aethe(n-r) smalest eigenvalues. Thistests
Ho: rcvsagainst H,: >r cvs. Thusthefirst row testsHo: r =0 against H,:
r>0; if thisissignificant, Hoisrejected and the next row is considered.
Thus the rank (r) is chosen as the last significant statistic, or as zero if

thefirst is not significant.

The likelihood ratio test statistic for the null hypothesis of r
cointegrating vectors against the alternative of r+1 cointegrating vectors
is the maximum eigenvalues using

A= -Tlog(l-A,) ThistestsHo: r cvsagainst H: r + 1
cvs. Thusthefirstrow testsHo: r=0against H,: r = 1; if thisissignificant,
Ho isrejected and the next row is considered.

The distributions of these statistics are functionals of vector
Brownian motion and their critical values are tabulated by, inter alia,
Johansen (1988) and Johansen and Juselius (1990). Thereis a potential
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problem with the size of these test statisticsin small samples, that is, the
JJ procedure tendsto over-reject the null when it istrue (Reimers 1992).
Hence a small-sample correction is applied to these statistics, replacing
T by T- np, where T is the number of observations, n is the number of
variables and p is the lag length of the VAR.The JJ procedure is now
programmed as specific commandsin MICROFIT, PC-GIVE, E-VIEWS,

and has a separate software package CATS in RATS.
3. Granger Causality
Consider the following equations:
Y=2aY_ +2ZBXx, *+e, (1)

X=2Zy)Y +20Xx 6 +e (12

it 2t
where the summations are for some lag length k, and e, and e, are
independently distributed white noises.

(11) hypothesises that the current value of vy is related to past
valuesof yitsalf andthoseof x, while(12) postulatesasimilar behaviour
for x.

We have the following implications:

i) xdoesnot ‘Granger-cause'y if, and only if, 3,=0, for al i, as
agroup. Thusthemeasure of linear feedback fromx toy iszero (Geweke
1982). That is, the past values of x do not help to predict y. In this case,
y is exogenous with respect to x (Engle et al. 1983).

if) Similarly, y does not ‘Granger-cause’ , if, and only if, y. =0
for al i asagroup; the measure of linear feedback fromy to x is zero.
That is, the past values of y fail to help predict x. Here x is exogenous
with respect to y. If the lagged terms have significant non-zero
coefficients, then thereis ‘ causality’ or feedback in both directions.

The *Granger non-causality’ may be tested by estimating the
genera (unrestricted) model (11) [or (12)], and comparing the residual
sum of squares from it with that from the restricted model without the
lagged x valuesin (11) [or lagged y valuesin (12)] by means of an
F-test.
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Though *Granger causality’ is concerned with short run
forecastability, while cointegration, with long run equilibrium, the two
(different) concepts can be brought together in an error correction model
(ECM). Supposey, and x, are both I (1) series and they are cointegrated
suchthat u =y, - Bx, isl(0). Aswe have seen earlier, this cointegrtaed
system can be written in terms of ECM as:

Ay,=-d,u , +lagged {Ay,, Ax} +6(L)e (13)

i’

Ax, = -3,u , +lagged {Ay, , Ax} + 6(L)e,, (14)

where 6(L )¢, and 6(L)e,, are finite order moving averages and one of
0, 0,# 0. Inthe ECM, the error correction term (EC), u,_, ‘Granger
causes Ay, or Ax, (or both). Asu , itself isafunction of y_ and x ,,
either x is*Granger caused’ by y, , ory, by x,,. That is, the coefficient of
EC contains information on whether the past values of the variables
‘affect’ the current values of the variable under consideration. A
significant coefficient implies that past equilibrium errors play arolein
‘affecting’ the current outcomes. This then implies that there must be
some‘ Granger causality’ between thetwo seriesin order to induce them
towards equilibrium. The short run dynamics are captured through the
individual coefficients of the difference terms.

Though popularly known as Granger (non-) ‘causality’ test (Granger
1969), it was first suggested by Wiener (Wiener 1956), and is often
referred to more properly asWiener-Granger 'causality’ test. Thismodel
has prompted a great deal of debate among economists (for example,
Zellner 1979) and even philosophers (for example, Holland 1986).
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