

PAKISTAN INSTITUTE OF DEVELOPMENT ECONOMICS

Scminar Paper No. 22

August 1977

WAGES AND EMPLOYMENT IN MANUFACTURING INDUSTRIL'S : A CAŚE STUDY OF PAKISTAN

Abdul Razzaq Shahid

WAGES AND EMPLOYMENT IN MANUFACTURIING INDUSTRIES
A CASE STUDY OF PAKISTAN
by

Abdur Razzaq Shahid*

A labour surplus economy faces a dilema between the desire to raic: wages and the desire to raise employment and cut into the surplus labour. It is not our purpose here to design an optimal wage policy which requirc balancing of a variety of short-term and long-term-considerations. The aim of the study is to provide empirical evidence on the wage-productivit. employment relationships in Pakistan's manufacturing industries at two dilevel of classification, our method of studying these relationships will the theory of production Via CES production function.

Wages

There has been a rapid change in the average money wages in the Industrial sector and this might have resulted insignificant substitution of other factors of production for labour. We will explore the effect on employment of rapid wage increase in Fakistan's Manufacturing Industries.

Figure (1) (see next page) shows that average hourly earnings rose by about 113.6% between $1954-55$ and 1969-70 from 35.32 to 75.47 paisa. The figure also enables us to compare this rise in earning with wholesalu price index and cost of living index. It is apparant that the wholesale. price index rose by abour 32% and cost of living index rose by 43%. The \dot{x} implied rise in the real equivalent average hourly earning when we apply the cost of lving index is 37.72% over the 16 years or an average annuall.: compaunded rate of 2.05% 。

The data for figure 1 are given below:
*
The author is a Resurch iconomist in the Pakistan Institute of Development Economics, Islrand.

$$
\text { -: } 2 \text { :- }
$$

	Average hourly earning (Paisa)	Cost of living Index	Wholesale pric Index
$1954-55$	38.32	87.40	
$1955-56$	35.00	84.70	-
$1956-57$	36.91	89.00	-
$1957-58$	38.82	93.30	90.00
1958.59	40.82	95.50	95.38
1959.60	42.61	100.00	92.80
$1960-61$	41.38	103.59	100.00
$1961-62$	40.77	105.30	104.77
$1962-63$	40.15	107.19	104.65
$1963-64$	46.67	109.80	102.86
$1964-65$	52.34	113.60	106.35
$1965-66$	$57.19 \ldots$	117.10	113.55
$1966-67$	58.98	127.00	112.03
$1967-68$	60.00	137.40	124.36
$1968-69$	67.74	140.20	125.68
$1969-70$	75.47	143.00	129.54

Employment

During the past fifteen years of its planned development Pakistan has experienced a significant rates of economic growth. Between 1954-55 and 1967-68 gross national product (at constant prices) expanded at annual cormound rate of 4.05%. However the effects of such growth in terms of employment generation re not equally good. The following table presents forecast of labour force and employment, during the third five year plan.

Sector
 Manufacturing

1. Large Scale

ii. Small Scale and other

Total Manufacturing
Agridulture
Construction
Trade and Services
Total all sectors

Employment in large scale fanufacturing as \% of total employment 10.07.

Allocation to the large scale manufacturing in the third five year plan was 255000 which is 10.07% of total additional employment, If we r on the CMI data, it appears from the statistics available that the emplo. in this sector had increased by 52029, approximately。Data on employment for 1968-69 was not available from CMI, therefore, the average of data for 1967-68 and 1969-70 was taken as a proxy for 1968-69.

Wages, Employment and Productivity

The level and structure of wage earnings influence labour productivit. because high wage earnings serve as an incentive to the workers and ther often put in their best.

An, entrepreneur, wants to minimize his cost of production. The factor combinations in his production process are to a large extent detcra. by the relative pricos of resource inputs. "hen wage earnings rise, proportionately more than the price of say capital he uses more capital inputs by adopting labour saving techniques subject to the technical limitations of his production process. The level of employment is directly influenced by the level and movement of wage earnings.

The annual average rate of growth of employment between 1954-1959 weis 16.8% slightly higher than 15.6% Lannual rate of output growth. But thir: rate declined to 4% between $1959 / 60$ and $1969 / 70$ while output at factor co rose by about 13.38%. the output elasticity of demand for labour thus works out to be 0.298 \% for this period. Implicit in these growth rates is the fact that labour productivity was increasing at an average of 8% per

Methodology.

This methodology has already been used earlier in other studies for Developing Countrịes.

As mentioned oarliex the aim of this study is to provide, empirical. evidence on the wage-employment-productivity relationship using time seric data (1954-70). Our method of studying these relationships will be the theory of production $V_{i a}$ CES production function.

CES production function is typically give by
(1) $\quad V=\gamma\left[K^{-P}+(1-\delta) L^{-P}\right\rceil-\frac{u}{P}$

The relationship that Arrow, chenery, Minhas and solow used to estimate, elasticity of substitution between labour and capital for crossmsection data is :
(2) $\quad \log \left(\frac{V}{L}\right)=a+b \log W+e$

Equation (2) is derived from usuall profit maximization conditions in which perfectly competitive markets prevail and constant returns to scale are assumed.

We shall use timeweries data. Since their is not term in above mentioned relationship to allow for technical progress or the effects associated with passage of time, we let $\gamma=e \lambda^{t}$ where $e^{h t}$ indicates ctud neutral technical progress. Thus time-weries counterpart of (2) becomes

Following P.J. Thryms we develop a more general model within the frameworls of CES production function.

$$
-: 5:-
$$

Differentiating equation (1) with respect to labour and re-arranging we get:

$$
\frac{\delta V}{\delta L}=U \gamma \frac{-P}{u}(1-\delta)\left(\frac{V}{I}\right)^{1+P} v^{P}[(1-u) / u]
$$

Equating with $\frac{V}{P}$ we get

$$
\frac{W}{P}=U \gamma-\frac{P}{u}(1-\delta)\left(\frac{V}{L}\right)^{1+P} v^{P}[(1-u) / u]
$$

Thus

$$
\left(\frac{\mathrm{V}}{\mathrm{~L}}\right)^{1+\mathrm{P}}=\frac{\mathrm{W}}{\mathrm{P}}\left[\mathrm{u}_{\gamma^{P / u}}(1-\delta)\right]^{-1} \mathrm{v}-\mathrm{P}\left[(1-\mathrm{u}) / \mathrm{u}^{\bar{F}}\right.
$$

After taking logrithms and dividing by $1+\mathrm{p}$ we arrive at our
estimating equation as follows:
(4) $\log \left(\frac{V}{L}\right)=\sigma \log \left[u(1-\delta) r^{-P}-u\right]^{-1}+6 \log W+(-\sigma) \log P+\frac{(1-\sigma)(u-1)}{u} \log$
where
$a=\sigma \log \left[u r^{-} \frac{P}{u^{t}}(1-\delta)\right]^{-1}$ is constant
$\sigma=\frac{1}{1+P}$ is the eleasticity of substitution between capital and labour.
$\mathrm{W}=$ product wages
$\mathrm{P}=$ Industry's product price
$U=$ The degree of return to scale
Letting $R=\frac{(1-6)(u-1)}{u}$
and adding a term to take account of those forces which are associated with the passage of time", eg. technical progress, equation (4) can be written as
(5) $\quad \log \left(\frac{V}{L}\right)=a+b \log W-\log P+R \log V+C t+e$

The manufacturing industries in Pakistan are characterized by imperfoctionc in both the commodity and factor markets. Foreign firms tend to pay higher than average wages while indiginous firms tend to pay lower than average wages. According to general formula worked out by Theil, the ommission of variable for market imperfections in estimation would bias the slppe of
$\log W$ - the elasticity of substitution - upwards, if the variable for markct (i)
imperfections and log W are positively correlated across firms ownerships.

R Co-efficient is 'Vendroon's coefficient. In literature the regression coefficient of output per man on output is known as vendroon's coefficient.

Neither value added nor average earnings, will be deflated for price changes because there is no adequate deflator available. Therefore, $\log \mathrm{P}$ price change will not be included in the estimating equation which means certain biases are introduœd into the estimation of σ.

Ain entrepreneur wants to minimize his cost of production; the factor combinations in his production process are to a large extent determined by the relative prices of resource inputs. When wage earnings rise proportio more than the price of say capital he uses more capital inputs by adopting labour-saving techniques subject to the technical limitations of his productul process. The level of employment is directly influenced by the level and movement of wage earnings. In our estimated model co-efficient of Log W will give the approximate measure of labour displacement by other factors of production due to increase in wages.

We mentioned earlier the relationship

$$
R=\frac{(1-\sigma)(u-1)}{u}
$$

where u is returns to scale and σ is elasticity of substitution.

For any given value of u greater than unity (increasing returns to scale) R is linearly decteasing function of \mathcal{C}. When we have constant returma to scale $(u=1)$ the term $R \log V$ drops out of estimating equation. Therofonc,
the elasticity of substitution parameter will be estimated from the stand ACMS model. For any given value of $u<1$ (decreasing returns to.scale) R i increasing function of elasticity of substitution.

We will calculate labour absorption percentages in the manufacturin industries based on R values from our model. - ($\mathrm{R}-1$) will give the elast c of employment with respect to output. From this labour absorption perce: will be calculated assuming 13% growth in value added. The following in groups will be considered in this study.

1. All Industries
2. Beverages
3. Textiles
4. Wood cork and Allied
5. Paper and paper products
6. Leather
7. Chemicals
8. Basic Matals
9. Machinery
10. Transport
11. Food
12. Tobacco
13. Foot-Wear and Wearing aymol
14. Furniture and fixtures
15. Printing nd Publishing
16. Rubber
17. Non-metalls minerals
18. Metal Products
19. Electric Machinery
20. Niscellenous Industrics

In addition to our estimating equation (5) regressions will be run for the following equations to see which are the explanatory variables: and which equation gives the best results:
(1) $\log \left(\frac{V}{I}\right)_{2 .}=a+R \log V+e$
(2) $\log \left(\frac{V}{I}\right)=a+b \log :!+c$
(2) $\log \left(\frac{V}{I}\right)=a+b \log \forall+c t+e$ (values deflated)
(3) $\log \left(\frac{\pi}{I}\right)=a+b \log W+R \log V+e$
(3) $\log \left(\frac{V}{I}\right)=a+k \log V \neq R \log V+c t+e$

$$
-7:-
$$

the elasticity of substitution parameter will be estimated from the stanc ACMS model. For any given value of $u<1$ (decreasing returns to.scale) R i increasing function of elasticity of substitution.

We will calculate labour absorption percentages in the manufacturin industries based on R values from our model. $-(R-1)$ will give the elast c of employment with respect to output. From this labour absorption perce: will be calculated assuming 13% growth in value added. The following in groups will be considered in this study.

1. All Industries
2. Beverages
3. Textiles
4. Wood cork and Allied
5. Paper and paper products
6. Leather
7. Chemicals
8. Basic Metals
9. Machinery
10. Transport
11. Food
12. Tobacco
13. Foot-Hear and Wearing ar
14. Furniture and fixtures
15. Printing nd Publishing
16. Rubbdr
17. Non-metalls minerals
18. Mctal Products
19. Electric Machinery
20. Niscellenous Industries

In addition to our estinating equation (5) regressions will be run for the following equations to see which are the explanatory variables: and which equation gives the best results:
(1) $\log \left(\frac{V}{L}\right)_{2}=a+R \log V+e$
(2) $\log \left(\frac{V}{L}\right)=a+b \log U+c$
(2) $\log \left(\frac{V}{\frac{V}{4}}\right)=a+b \log \forall+c t+e$ (values deflated)
(3) $\log \left(\frac{\forall}{L} \cdot\right)=a+b \log U+R \log V+e$
(3) $\log \left(\frac{\mathrm{V}}{\mathrm{I}} \cdot \mathrm{C}\right)=a+\mathrm{b} \log$ i $\neq \mathrm{R} \log \mathrm{V}+\mathrm{ct}+c$

$$
-: 8 \text { :- }
$$

(4) $\log \left(\frac{V}{L}\right)=a+b \log W+R \log V+c t+e$ (values not deflatec) (1), (2) and (3) have been run without including the time trend variable arc without deflating the values of the variables. Regressions for the Equat ane (2') and (3') have been carried out including time trend variable ' t ' anc by deflating the relevent values of the variables. Finally regression for equation (4) has been run after including time trend variable ' t ' but without deflating the relevant values of the variables.

Data

The data has been taken from Second five year plan and the CAIs. The reliability of data is doubtful therefore the results can be regarded as tentative.

For the time series estimates data is available for the two digit level of industries from 1954 to 1970 with the exception of four years (1956. 1960-1961. 1961-1962. 1967-1968). Product price indices have been taken from 25 years of Pakistan in statistics.

Following are the definitions of the variables used in the study.

1. Gross value added. (V) Deprecition changes which depend on tax
policy rather than on capital consumption, have not been deducted.
We wanted to add a variable for the market imperfections. The equition of the following form $: \log \left(\frac{V}{L}\right)=a+b \log W+R \log V+\log M+c t+c$ But due to unavailability of data that variable was excluded.

-:9:-

2. Employment (2): Employment includes production workers, other administrative and supervisory staff (and unpaid workers).
3. Wage Rate (W): Wage rate is the average wage obtained by dividi total employment dost (including wages, salaries and other cas and non-cash benefitso) by the number of employces. For equat (2') and (3') the average wage is also deflated by the whole : 10 price index.

Results

The equations (2) and (3) give the best fit. When we Compare the rosults of equation (2) with those of (2') we observe that in the case of equation (2') all the coefificients of log W are insignificant except for four industries. While in the case equation (2) all the cocfficien. are highly significant except for Tabacco industry. R^{2} has also improve for seven industries out of thirteen industries conpared and is high enough for the remaining industries.

Similarly equation (3) gives better results when compared to (31) and (4). Therefore labour absorption will be calculated from qeuation (3). The reason for the improverant of results of equation (2) and (3) over t (others can be that the deflators are unreliable and there might be the problem of multi-corrinearity or the effect of some other unkown factor might be in operation.

The results of equation (3) fron which we will calculate labour absorption per-centages aro given in table (1) for 18 industry groups, manufacturing sector as a molo end for miscellenous industries.

$$
-: 11:-
$$

The coefficient of log W would be cxpectcd to be positive i.e. σ would be expected to be positive. It is evident from table (1) that coefficient of $\log W$ is positive in all the casus expect for leather and non-metalic minerals. The coefficient of log w measures the clasticity of labour displacement by other factor's of production due to increase in wages. For example Table 1 khows that in the Metal Products Industry a 10 per cent increase in wages would reduce employment (all other factor bcing equal) by 4.1 per cont. In Textile Industry a 10 per cont increase in wages would reduce employment by 12.3 per cent, all other factors beine equal.

The coefficient of v is positive in all industries and is significant at 5 per cont level in fourtoan induistries and at 10 per cont level in tio industries.

The ommission of $\log p$ from estimating equation would bias the slope of $\log \mathrm{V}-\mathrm{C}$ downward (upward) if prices are negatively (positively) correls.tred with wages in an inter-industry sense.

Regression wns run with log w and lor v as explanatory variables. Inou results of the regressions are given in Table (2) and Table (3).

From table 2 and table 3 we observe that eithor log \mathfrak{w} or $\log v$ is a possibly explanatory variable for value added per worker. However Table 1 indicates thet there is multi-collinearity between log w and logv. Lawrenc klien has suggested a rule of thumb that multi-collnearity is tole able if Yij<R, where R is square voot of the co-efficiant of multiple deteminativ. We observe fron Table (1) thot V is is les: than R in fifteen industries exc t for Beverages, Textilc, Paper ard Paper yroducts, Nonom talic minerals, anct Basic metals and even thes i dustries nre nearly passing that criterian
-:11:-
The coefficient of $\log W$ would be cxpected to be positive i.e. σ would be expected to be positive. It is evident from table (1) that coefficient of log w is positive in all the cases expect for leather and non-metalic minerals. The coefficient of log weasures the clasticity of labour displacement by other factor's of production due to increase in wages. For example Table 1 shows the.t in the Metal Products Industry a 10 per cent increase in wages would reduce employment (all other factor bcing equal) by 4.1 per cont. In Textile Industry a 10 per cent increase in wages would reduce employment by 12.3 per cent, all other factors bein t_{t} equal.

The coefficient of v is positive in all industries and is significant at 5 per cent level in fourteen induitries and at 10 per cent level in tyo industries.

The ommission of log p from estimating equation would bias the slope of $\log W-{ }^{-}$- downard (upward) if prices are negatively (positively) correls.tric with wages in an inter-industry sense.

Regression wos run with log w and log v as oxplonatory variables. ind results of the regressions are Given in Table (2) and Table (3).

From table 2 and table 3 we obsorve that either log w or $\log v$ is a possibly explanatory variable for valuc added per worker. However Table 1 indicates that there is multi-collinearity between log w and logv. Lawrenc klien has suggested a rule of thumb that multi-collnearity is toleable if $Y i j<R$, where R is square voot of the co-efficiant of multiple detcrminatiu:. We observe fron Table (1) that V jej is les; than R in fifteen industries exce for Beverages, Textile, Fane: ard Papur products, Nonom talic minerals, anci Basic metals and even the se i auntries rere nearly passing that criteria.

TA	12:- 2			
Industry Group	Constant	Log w	Value	R^{2}
All Industry	-4.47	1.80	13.89	0.96
Beverages	-5.73	2.01	2.96	0.56
Food	-	-	-	
Tobacco	5.45	0.61	0.41	0.40
Textiles	-2.47	1.50	5.46	0.77
Footwear and Wearing appo	2.45	0.82	2.40	0.38
Woodcork \& Lllied	-5.23	1.85	3.96	0.72
Furniture \& Fixtures	1.90	0.84	4.37	0.81
Paper \& Paper Products	3.45	0.75	2.06	0.46
Printing \& Publishing	-3.22	1.55	9.95	0.90
Leather	-0.76	1.33	2.73	0.45
Rubber	-1.37	1.39	9.34	0.92
Chemicals	-3.92	1.72	6.66	0.83
Non-Motallic Minerals	-5.48	1.94	4.85	0.72
Basic Metals	-1.12	1.32	5.85	0.79
Metal Froducts	-1.48	1.31	7.60	0.86
Machinery	-2.90	1.41	15.76	0.96
Electrical Machinery	-1.48	1.35	10.31	0.92
Transport Equipment	-2.87	1.51	5.73	0.79
Miscelleneous Industries	-2.79	1.61	6.71	0.83

-:13:-

TABLE 3
REGRESSION RHLATING VALUE ADDED PER HORKER TO VALUE ADDED

S.No	Industry group	Constant	Log ${ }^{\text {V }}$	Value ${ }^{\text {t }}$	R^{2}
	All Industries	-1.75	0.49	5.59	0.90
	Food	-	-	-	-
	Beverages	2.72	0.40	3.49	0.64
	Tobacco	4.97	0.27	4.02	0.81
	Textiles	0.54	0.38	4.50	0.69
	Footwear \& Wearing	2.64	0.35	4.04	0.64
7.	Woodcork \& Ellied	2.52	0.38	6.85	0.88
8.	rurniture \& Fixture	2.31	0.38	7.90	0.92
	Paper and Faper Products	2.30	0.40	2.41	0.53
	Printing \& Publishing	0.57	0.52	4.51	0.69
11.	Leather	2.23	0.66	9.20	0.90
	Rubber	0.28	0.52	10.72	0.94
	Chemicals	0.95	0.44	7.22	0.86
	Non-Metalic Minerals	0.45	0.47	8.65	0.88
	Basic Metals	0.23	0.47	5.86	0.79
16.	Metal Products	0.55	0.49	13.09	0.94
	Machinery	0.30	0.45	10.29	0.92
	Electrical Machinery	1.72	0.38	6.49	0.83
	Transport Equipment	0.40	0.46	7.35	0.86
	Miscelleneous Industrics.	. 4.48	0.71	6.87	0.85

$$
\text { -: } 14 \text { :- }
$$

Labour Absorption Percentages

As mentioned earlier we will calculate labour absorption percontagoe
from the coefficient of $\log V$, which is :
$R=\frac{(1-\sigma)(u-1)}{u}$
Our estimate of u from the above mentioned relationship suggest that assumption of constant returns to scale is not justified which leads usc to the conclusion that results obtained from CES production function model where $\log \mathrm{H}$ is the only independent variable become questional.

All the estimate of R (coefficient of $\log V$), except four , are significant. Based on the values of R we have calculatedthe labour absorption percentages which have been presented in table (4) taking 13\% as growth rate of value added.

Labour absorption percentage for Kenya are given in table 5 we can compare them directly with those of Pakistan because of difference in the classification of industrios. However we can get a rough idea as to how Pakistan's labour absorption percentages compare with those of Kenya. Table 5 presents the labour absorption percentages for Kenya.

After examining table 4 and table 5 we reach the conclusion that labour absorption percentages for Pakistan are significantly higher than those of Kenya.

S.No Industry Group	R	-(R-1)	Absoret ntages a rowth in
1. All Industrics	0.14	0.86	11.18
2. Food	0.51	0.49	6.37
3. Bevurages	0.28	0.72	9.36
4. Tobacco	0.27	0.73	9.49
5. Textiles	0.08	9.92	11.96
6. Footwear \& Jearing	0.29	0.71	9.23
7. Woodcork \& LIIied	0.29	0.71	9.23
8. Furniture \& Fixture	0.31	0.69	8.97
9. Papor \& Papor Products	0.31	0.69	8.97
10. Printine Publishing	0.12	0.88	11.14
11. Leather	0.79	0.21	2.73
12. Rubber	0.31	0.69	8.97
13. Chemicals	0.28	0.72	9.36
14. Non-Metals	0.47	0.53	6.89
15. Basic Metals	0.25	0.75	9.75
16. Metal Products	0.36	0.64	8.32
17. Machinery	0.17	0.83	10.79
18. Electrical ifachinery	0.17	0.83	10.79
19. Transport Equipment	0.36	0.64	8.32
20. Miscellencous Industrics.	0.39	0.61	7.93

-: 16 :-

TABL 5

S.No Industry Group $\begin{aligned} & \text { Labour Absorptiol } \\ & 8 \% \text { growth in Val }\end{aligned}$		
1.	Food	2.2
2.	Tobacco and Beverage Industrios	-7.6
3.	Textile clothing and footwear Industries	1.2
4.	Sawn timber furniture	0.02
5.	Paper and Faper Products.	1.4
6.	Leather and Rubber Products	1.7
7.	Basic Industries, Chemicals	2.0
8.	Clay products, glass product	4.0
9.	Metal Froducts	5.3
10.	Machinery and Transport	13.7
11.	Niscellaneous Manufacturing	6.1

$$
\text { -: } 17 \text { :- }
$$

Conclusion and Policy Implications

One of the reason or higher labour absorption percentages in Pakist : ' manufacturing than those in Kenya's manufacturing is difference in the f... rates of value added betwoen the two countries. For Pakistan's we took 1 as growth in value added while for Kenya it has been taken as 3%.

Average rate of growth of cmployment between 1959/50 and 1969/70 was 4 percent while output value added at factor costs rose by abour 13.3 The labour absorption capacity of Pakistan's manufacturing industrics they judged therefore to have been rather limited.

As pointed out in $\leq 6 \overline{/}$ if the industrial labour absorption is considereds a major social objective shifts in manufacturing structure to decreasing labour use, such as those absorved in Pakistan's manufacturine: to be reversed, implying the adoption of policy measures that will promet small scale production in labour using industries, with proper recornitio the interdependance among industries in terms of input requirements and distribution of output. There are important limitations, however, on the to which such policy guidelines can be applied. For one thing, resource allocation within the manufacturing sector also bears on policy objectiv other then employment generation. For cuample higher productivity would associated with the economics of large scale production. In such a case "walking on two legs policy" could be beneficial i.c. exploiting both the benefits from the economies of scale in particular industries and the hig employment generatine potential of shall' production in other industrics with a view to minimizire the social cost of producting a given vector of commodities.

Bhatti/

Zecression relating Vazue aded per worler to Value added

time series data

$\begin{aligned} & \text { Yoef } \mathrm{Bi}- \\ & \text { cient } \\ & \text { of } V \end{aligned}$	Level t of Sic. Value	Coeffi- cient of tire	$\stackrel{t}{\text { Velue }^{-}} x^{2}$	$\mathrm{r}_{\mathrm{Vt}} \quad \mathrm{N}$	No \hat{a} observation
0.50	. $35 \quad 1.79$	3-02	0.650 .96	0.98	10
0.41	. $350 \cdot 2.11$	0.02°	0.860 .96	0.97	10
0.95	. 200 - 2.06	-0.07	1.500 .88	0.97	10
0.99	.200 12.42	-0.05	-5.4.7 0.95	0.75	12
9.77	. 250 4.14	-0.02	-1.55 -. 8 E	0.80	1.9
0.53	. 3002.65	-3.32	-9.90 0.98	0.89	11
0.67	. 3005.71	-0.0is	-1.j5 0.98	0.85	©
0.29	. $300 \quad 0.55$	e.02	C. 56	C. $\%$	0
0.83	.250 4.67	-0.02	-0.95.0.95	0.93	10
. 0.34	.400 1.07	0.003	$0.10 \quad 0.90$	0.74	10
-0.19	-0.62	0.06	1.480 .84	0.96	10
9.13	. 4500.25	0.02	$0.25 \quad 0.58$	0.98	11
0.32	. 4000.9	-0.03	$-0.51=0.22$	0.75	9

REFERENCES

1. Reynolds L.G. " Wages and employment in the labour-surplus Economy". The American Economic Reviow Vol. LV No. 1 Narch 1965.
2. Ishrat Hussain " Employment offects of Industrial growth in Pakisteri". Pakistan Development Review Vol XIII No. 2 Summer 1974.
3. Kemal i.R. "Sectoral Growth rates and efficiency of factor use in $1 \cdots$ scale Manufacturing sector in Pakistan". Pakistan Developic Review Vol. XV No. 4 Winter 1976.
4. Guisinger Stephen and foharmad Irfan. "Real wages of workers in Pa : 1954 to 1970, Pakistan Development Review Vol XIII No. 4 Winter 1974.
5. Brown Phelps E.H. and Brown M.H. " Larnings in Industries of the Uniter Kingdom 1948-59". The Economic Journal Vol. LXXII No. 287 September 1962.
6. "Anatomy of labour absorption in Phillipine Manufacturing 1956-66". Economic Bulletin for Asia and the Far East; United Nations Vol XXIV No. 2/3 September/December 1973.
7. Shahnaz Kazi, Zahira Suleem Khan, and Seemin Anwar Khan, "Productio: Relationship in Pakistan's Manufacturing Industries." Pakistan Development Review Vol XV No. 4 Winter 1976.
8. Sengax WM " Wages Market Imperfection and labour absorption in Kenya Manufacturing Industries " East Africa Economic Review Vol. 5 No. 1 June 1973.
9.6 Reynolds L.G. and Gregory Peter. "Wages, Productivity and Industrialization in Prerto Rico". Economic Growth Centre, Yale University,
9. Pakistan Central Statistics Office 25 Years of Pakistan in Statistic 1947-1972 Karachi 1972.
10. Pakistan Statistical Division. "Census of Manufacturing Industries".
11. Todaro MoP. "An Analysis of Industrialization, Employment, and Unemployment in less developed countries". Yale Economic Essays Vol. 8 No. 2 Fall 1968.
$\frac{\text { Bhatti/* }}{31777 /}$

This work is licensed under a Creative Commons
Attribution - NonCommercial - NoDerivs 3.0 Licence.

To view a copy of the licence please see: http://creativecommons.org/licenses/by-nc-nd/3.0/

