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SEARCH PROCEDURES FOR OPTIMAL POLICY 
IN STOCHASTIC, TIME-DEPENDENT, NONLINEAR 

SIMULTANEOUS EQUATIONS MODELS 

by 
Robert James Whitacre 

Synopsis 

Several alternative numerical approximation techniques 
suitable for computer simulation are derived which are capable of 
solving stochastic3 time-dependent, nonlinear simultaneous equations 
models. Their applicability in the Kenyan context in the solution of 
'Jembe', the most recent World Bank Model of the Kenyan Economy, 
named 'Jembe', as well as deriving the solution of the model contained 
in I.D.S. Working Paper number 216 by this same author. 
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1. Introduction 

This paper derves numerical approximation techniques 
applicable to optimal policy specifications upon the time path of 
controllable variables of stochastic, time-dependent, nonlinear 
simultaneous equations models where the feed links between successive 
stages constitute a multivariate vector of finite dimension and time 
horizon. Specifically optimization requires approximating the infimum 
of a loss function defined over the space of possible endogenous variable 
values. 

Selecting a macroeconomic policy package extending over several 
time periods under specified objective criteria resulting from a 
stochastic non-linear econometric model falls within the scope of this 
analysis. 

It is known1 that nonstochastic simulation, that is repeated 
solution of such a model with the exclusion of the error terms 
incorporated in the structural equations, will lead to policies which: 
(1) fail to optimize the designated criteria, (2) are statistically 
biased; the degree.of bias being indeterminable, and (3) are incapable 
of being compared with posterior historical values since confidence 
intervals on the time path of the endogenous variables will not be 
established. 

Stochastic simulation, repeated solution of the model with 
error terms attached to the structural equations drawn from the 
corresponding structural equation error term distributions, has been 
shown J_ 1'2_/ to asymptotically yield an error distribution on the path 
of the endogenous variables which converges uniformly to the true 
multivariate distribution function. Such convergence is, of course, 
conditional upon the. policy specified. Furthermore it is argued 
[_ 12_/that the Bayes' Principle, choosing that policy which minimizes 
expected risk (or in economic terminology, that policy which maximizes 
expected utility), is capable of finding an optimum policy when the set 
of potential policies is finite. 

1 See R.J. Whitacre /12_/ for a mathematical demonstration 
of these conclusions. 
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This present investigation analyzes policy determination 
under the Bayes' Principle when the set of potential policies is 
unrestricted, i.e, all specifications on the exogenous variables which 
do not violate the original constraints of the problem are admissible. 
It is found that most of the' algorithmic techniques, both gradient and 
nongradient methods, which can be utilized to approximate an optimum 
in the.:nonstochastic': case can be included as components of stochastic 
maximization algorithms." In addition, some conditions under which such 
extensions are valid ahd several alternative stochastic maximization 
algorithms are then suggested. 

f:-,\r»v-• Section 2, "Principles of Stochastic Maximization," compares 
stochastic maximization with ncristochastic maximization and specifies 
nece'ssary conditions for an algorithmic technique to converge to an 
optimum. 

• •: Section 3,: "Algorithmic Techniques of Stochastic Maximization," 
develops various alternative stochastic maximization algorithms and 
Section 4, :"Applicat'ions", briefly describes an application of the 
theoretical stochastic maximization techniques which is currently 
being conducted. These findings will ultimately constitute a Monte-Carlo 
type study comparing several of the alternatives available. 

2. Principles of Stochastic Maximization 

\t'< Only in the nonstochastic univariate case where search for 
a unimodal function is restricted to a finite region has it been 

2 
possible to" find an optimal search technique. ' No such measure of 
efficiency'has been proposed for the various n-dimensional search techniques, 
and even for unimodal multivariate functions a "best" technique cannot be 
found as information empirically gathered depends upon the technique 
employed to gather this information. Different techniques will have 
different degrees of relative efficiency depending upon the particular 
objective'1 function. This arises as different techniques attempt to exploit 
various types of information which may or may not be present in a 

2. The Fibonacci method is known to be preferable by several 
criteria when the number of experiments is of major concern. ~ . 
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particular objective function. Different objective functions for 
maximization will normally vary in both the nature and quality of 
information in different regions in which the maximization process is 
conducted. In the general problem, evaluation of alternative methods 
must be examined in light of the particular problem being investigated; 
this should be done analytically where possible. However, Monte-Carlo type 
methods should prove as useful in this field as they do presently in the 

q comparison of alternative statistics in econometric investigations. 

For stochastic models, there are general characteristics which 
must be contained within any search procedure attempting to find that 
policy which minimizes the risk function. Every such procedure must be 
sequential in nature, specifically for each policy specification a 
sample set must: be drawn from the structural disturbances, the resulting 
system of simultaneous equations solved, the objective function 
evaluated and the resulting information incorporated into the new posterior 
evaluation of the risk function. Then this evaluation of the risk 
function is compared with the current risk function evaluations for 
alternative policies and finally a decision made as to the next policy to be 
evaluated. 

Thus in any logical method for stochastic maximization there 
are two components of any algorithmic procedure which are of primary 
importance: (1) when should sample evaluations of the current value 
of the empirical risk.function cease for a given policy and (2) what 
criteria should be used to determine the succeeding policy to be evaluated. 

Denoting by T^ the current empirical frequency distribution 
of the endogenous variables for sample size n(that is n drawings have 
been taken from the structural disturbances and the model solved for 
the endogenous variables for each drawing) subject to a given specification 
on the endogenous variables x it has been shown in J_ 10_/ that 
(1) limTn = T, 

n-»- °° 
where T is the true posterior frequency distribution of the endogenous 

3. From a system viewpoint the present state of econometric 
analysis analysis for macroeconomic models must be considered seriously 
deficient. Attention has been focused upon the estimation of econometric 
simultaneous equations models to the near exclusion of the ultimate 
objective for formulating such models; (optimum policy determination. 
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variables. Thus if we denote the risk function of a policy x subject 

to T by r(x,T ) -it is the case that n J * n 

(2) lim. r(x,T ) -= r(x,T). 

For any finite n however the equality given in equation 
(2) need not hold and, in general, it is in possible to deduce whether 
the current posterior evaluation rCx,^) will be greater or less than 
r(x,T). Therefore any search procedure which permanently eliminates 
from ..further search cannot be shown to approach the optimum policy in the 
asymptotic limit. 

..... A decision to stop evaluation of the current policy might be 
based upon such diverse criteria as (1) a random mechanism, (2) prior 
decisions.before the-initiation of the iteration process, (3) the path 
of moments-.of T^ or r(x,Tn> for the current policy being evaluated and 
those that have already been evaluated, (4) the nature of r, e.g. the 
specification and number of the constraining stochastic simultaneous 
equations and the structure of losses associated with the various states 
that may arise, (5) the costs of evaluation, (6) the time required for 
evaluation,, and (7) the purpose to which the model is to be put. 

, When deciding what criteria should be used to determine the 
next policy to.be evaluated the proceeding list is applicable. But the 
proper direction and length of movement from the present policy to a new 
one to be evaluated must also be considered. 

If direction can.be chosen from but a finite number of choices, 
the direction of movement need not necessarily be in the direction of 
greatest improvement in the objective function. If, on the other hand, 
the choice is unrestricted, it would .seem desirable that the movement be 
guided by the gradient of the risk function at this point. Determination 
of the gradient requires that the nature of the risk function be known 
within a neighborhood of the present policy. 

Distance of movement along the desired direction must consider 
the length of increment for such movement. If step sizes are too small 
convergence to an.optimal policy' will be very slow even if the right 
direction is chosen. If step sizes are too big the value of the risk 
function may decrease even though the true optimum lies in the proper 
direction. 
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Only in special circumstances will an extremal value of the 

risk function even in the asymptotic limit be known to be a global 
optimum; the basic requirement is clearly the same as that encountered 
in geometric programming, that the risk function be convex with respect 
to the exogenous policy variables x. For even a moderately complicated 
problem of the type under discussion it would be extremely difficult 
if not impossible to prove convexity of the risk function in the 
asymptotic limit. Such proof, however would be purely superfluous in 
the case of algorithmic stochastic maximization. The values of T for n 
any given policy x are, of course, conditional upon the drawings made 
from the structural disturbances. Different sets of drawings will 
normally yield different values of T and therefore of r(x,T ). Even if n n 
it were known therefore that r(x,T) were convex in x this would not 
guarantee that r(x,Tn) was convex in x even if T^ for each x corresponded 
to the same sets of drawing from the structural disturbances. In such 
circumstances where a function is not known to contain a single optimum 
a widely accepted procedure is to begin the search at a number of initial 
base points widely dispersed. Indeed this was one of the motivations for 
the recommended finite set of diverse policies to be evaluated in j_ 12_/. 
Then the maximum of the suboptimums generated from these initial search 
points should be chosen. 

On the basis of this discussion any procedure which starts with 
alternative specifications of the error terms and then proceeds to find 
the optimal policy contingent upon these error terms seems -destined to 
failure. It appears necessary that a policy be specified subsequently 
followed by repeated drawings from the disturbance terms to guarantee 
convergence tc an optimum policy. Thus any penalty function approach where 
the exogenous variables are included in the maximization procedure seems 
invalid (the penalty function approach, to be covered in the next section, 
is valid however when this is not the case). 

3. Algorithmic Techniques of Stochastic Maximization 

3.1 Quantifying the Problem 

It is now necessary to quantify further the original specification 
of the problem. Denote by y the matrix of endogenous variables, where 
the first subscript refers to the time index while the second refers to the 
number of endogenous variables to be determined from the constraining 
simultaneous equations of the model. If there are m time periods and n 
endogenous variables then 
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3-1 y = ~y.. 7 — m x n 

Similarly let us denote by x the matrix of exogenous variables which 
define a policy, 

3-2) x = /"V 7 — ik— m x p 

and b be the matrix of estimated coefficients in the constraining 
equations, assumed here to be constant throughout the model (the analys ;s 
can easily be modified to where this need no longer hold), 

3-3) b = /7b 7 — rs— r x s 

Suppose that.there are z constraining equations for which there are also 
associated error terms u^, 1 <_ v z at time period t. 
Then'the system of constraining equations at time period t is given 
by- ' - ' • 

3-4) g1(yt,xt,b,uj) = 0 

3-UA) z (yt, x^b.u^O 

Here the t superscript indicates the t^' row of the matrices y and 
x respectively. The error terms u^ are assumed drawn from the error 
distributions of the associated equations of the constraining 
simultaneous equations model. 

To relate the system of equations 3 - 4 to the usual applied 
econometric analysis it is merely necessary to set ut=0Vi=l, ...,Z. 
The resulting model is then 

3-4B) g l (yt,xt,b,0) =0.._:"_ ....... 

kz (vt,xt,bsO) =0. 
Given this simultaneous system the standard technique has been to specify 
alternative policies (i.e., alternative xt) and solve for the 
corresponding.y^; A specific objective function defined over y* 
guiding the alternative x'̂  not being utilized, 

* In the case of the Wharton model this was, until quite recently, 
accomplished via Newton's method. 
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Before continuing the specification of the problem, let us 
note that for problems with inequality constraints all such; problems can 
be converted into the form of 3-4- by the addition of approporiately 
specified slack variables. Also the presence of equality restrictions forces 

• •' t 
a cihoice only of those points y which satisfy the equations 3-4. Such; 
a point may be difficult to obtain and it will usually be necessary to 
conduct a separate search for a feasible initial search point before 
optimization can begin. One practicable method is to find that yt 

which minimizes the sum of squares 
z 

3~4-C) S=£ g 2, . ,w„. 
k=l k 

thus converting our search for a feasible point into one. of a search - f 
in an unrestricted form; then many numerical or analytical methods are 
potentially useable. If a solution exists, it will, of-course.be at(v -C 
S=0. In the case where we are analyzing repeated samples from our 
error distributions attached to g to g solution with respect to one X z 
specification upon the u^ does not necessarily imply that a solution will 
exist for a different specification upon th'e "û , as the system of equations 
to be solved is nonlinear. Obviously if ate any time during the solution 
procedure it becomes impossible to solve the set of constraining simultaneous 
equations for some drawing of the u^ from the set of structural disturbances 
then there is a serious specification error present within the * constraining 
equations. . tnr-tsv •- •"'• 

Specification of each interaction in the simulation procedure for 
a given policy and error specification in the form of minimization contained 
in equation 3-4 implicitly assumes that failure to satisfy each equation 
is given equal weight-in the overall minimization process. This would be 
satisfactory if solution always proceeds to a specification of y* such 
that S=0. However as will be argued in the •'next1 section determination of 
the endogenous variables will typically stop short y*.and there will 
usually be an error resulting in termination of the process at some value 
y close to y*. Since y will depend upon the specification of the 
underlying objective function it is suggested here that instead of 
equation 3-4- that the following objective function be utilized. : : 
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where the coefficients A^ are weighted according to the associate 
explanatory power of the associated equations g . Intuitively those 
equations which have been estimated with but little accuracy (i.e., 

2 
those with a low R ) we would not be overly concerned with violating 

~ whereas we would with those of high explanatory power. Moreover those 
idetttities which are explicitly specified within the model we would not 
want to violate at all. As a practical suggestion the coefficients can 
be given the values of the associated correlation coefficients (i.e., 

2 
the R values) while for those equations which are identities can be 
assigned the value A^ = 1. 

Rewriting the system of equations in 3-4 we have 

3 - 5 ) g(y,x,b,u) = 0 where 

3- 7) g(y,x,b,u) = g1(y1,x1,x1,b,u1) 

m, m* m , m, 
g (y ,x ,b,u ), . 

and in 3-6 0 is a tm column vector of zeroes. 
Now given a policy x and a drawing u from the structural 

equations, both over the m time periods involved, the solution vector y 
is obtained. Different drawings of u, if drawn from the structural error 
distributions, generate the posterior error distribution Tn(y)« The 
solution for each drawing of error terms 'u(n) generates the matrix 
y(n) = y(n/x,u). Given a loss function defined over y denoted by h(y) 
then-for n observations upon the error terms u drawn from the structural 
disturbances for a given policy x expected loss is given by 

n 
3 --8.) r(x,T ) = £ h(y(i)|x). 

n t=l 

n 

From Section 2 we have equation 2-2 stating that lim r(x,Tn)=r(x, 
n->°° 

which implies that lim var(r(x,T ))=0. However for small sample size 

the variance of the risk function for any policy might be quite high as 
the frequency distribution T even in the asymptotic limit cannot be 
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3-2 Classification of Search Techniques 

The initial distinction must lie between those which require 
exact solution of equation 3-6 for each drawing from the structural 
disturbances and those which do not. Particularly given a policy 
specification and a specified error matrix an attempt can be made to 
find the optimum policy where some estimate y of y is utilized, implying 
that a resulting estimate h of h is used, i.e., h/y(u)/ is used as an 
estimate of h/y(u)/. Since for any drawing u the use of h is used in 
determining r{x,Tn) which is itself utilized as a statistic measuring 
r(x,T), or used in finding the median as previously mentioned, it seems 
that terminating the search for an approximation of y at a level y would 
considerably ease the computational burden. Specifically if we write the 
risk function as r(x,y,T) we will utilize approximations r(x,y,Tn). Also 
it is not obvious that in the general case an exact solution of 3-6 can 
readily be found. Indeed most algorithmic techniques that can be utilized 
to solve 3-6 would happen along the exact solution with probability equal 
to zero. 

Since 3-6, can be regarded as a deterministic system once the 
error terms have been incorporated from a specific drawing from the structural 
equations, any of the nonstochastic solution approaches can be utilized 
to obtain the approximation y of y. This may be done as in the conversion 
to an unrestricted form as in 3-4B or directly by successive substitution 

5 
as in the Gauss-Seidel method-

Since the conversion into 3-4 of equations 3-6 may be regarded 
as an unconstrained maximization problem any of the algorithmic techniques 

4 Since the distribution function for small samples must be taken as 
unknown a better measure of r(x,T) might be the median of h(y(i)/x), 
i=l,...,n. The median presumably is an effective method of preventing an 
overpowering influence of outlier observations upon the algorithmic 
solution process. Since many potential stochastic maximization processes 
might presumably start off the search with but a few observations upon each 
potential policy the median might prove a better statistic in such early 
stages. Whether or not the median should be used and if used when it 
should be replaced would depend upon the particular algorithmic solution 
technique under examination as well as the particular problem. Such 
determination would probably have to take place through Monte-Carlo type 
numerical methods rather than analytic techniques. 

5. The Gauss-Seidel method can be found in Fisk / 3 / 
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suitable for maximization which have been already developed for 
maximization of unconstrained nonstochastic systems are applicable 
at this stage. The overall error term allowable for the resulting 
solution vector, will of course have to -be determined by the stochastic 
maximization process, involved in. finding an approximation to the optimal 
policy x5*. determined from r(xs'£sT)•• = max r(x,T). A short listing of the ' 
more important, e.g. those .which have" shown themselves to be relatively 
efficient, must, include in the direct search methods the Sequential Simplex 
Method (as it is simple to program, has the "Smallest number of points to 
start,, needs only one experiment for-each new movement, and is the 
easiest.to understand), the Rosenbrock technique, its modification by 
Davies, Swann, and .Campey., .the .Campey and Nichols; method, the Nelder and' 
Mead technique, and the Complex method of Box; and in the gradient methods 
those of.Kelleyj Hildcbrand,- Cauchy, the method of conjugate directions, 
Carol and Fletcher-Reeves-.' ;-A.complete "listing of'these various'techniques 
here, would-be inappropriate.-as they have appeared :in'the literature. The 
original, sources .outlining these techniques as well as others can be found 
in the bibjliography.. ̂  The, available Monte-Car 10 studies, of which there are 
as yet very few, seem to indicate that the gradient methods appear to 
converge more rapidly than the nongradient techniques; although more evidence 
is clearly needed,For-.this stage of the stochastic maximization problem, 
tlje..gradient,,may be• fairly. easy, to calculate as the objective function for' 
maximization is known, <Q.g* it is given by'equation 3-4D, andthe' " 
necessary partial derivatives' can be determined by .straightforward ~ 
differentiation and evaluationj '" " ' • • • 

.. In approximating ,rC-x ,.y.,T) by r(x,y,T^j there will be a tradeoff 
between., the. computational Iwrden .determining y as ah approximation of y at 
each stage of the iteration procedure as compared to utilizing T as an n 
approximation to T. In addition- it is-very'difficult to deduce 
quantitatively what this trade-off will be; indeed; it,is most likely 
impossible ..upon an analytical level. For given specifications of a 
stochastic-'constraining model" as in 3-6. the distribution of. y , from the 
true values y for given .drawings of the'error terms will depend upon both 
the algorithmic solution procedure chosen, the nature of the equations 
in the model, ¥and the;particular sets' of error terms drawn from the 
structural' equations. While'.the rate of convergence of T^ to T will . 
also depend upon, the same types of data, with of course T being Unknown 
a. priori. Convergence of any algorithmic process to the true maximum 
of the stochastic maximization problem; that is, any -algorthmic process 
which examines a sequence of Doints x. such that lim x. = x* where x* is l l 



- 11 - r, IDS/WP 215 

that policy such that r(x*,T) " = max r(x,T), must necessarily 
have contained in it a technique ' that guarantees that lim y = y and 
lim T = T. n 

To determine an initial starting point for stochastic maximization 
through whatever algorithmic process is chosen it appears that it would 
normally be of interest to compare x* with that policy x** which is 
defined by r(x-"-,0) = max(x,0); that is, a comparison between the stochastic 
simultaneous equations model with its deterministic counterpart. 
Solution for x** takes place either through one of the projected gradient 
approaches, the penalty function approach, Box's Complex Method, or 
one of the other computationally efficient algorithms. 

Also when simulating the model choice of the matrix u of error terms 
should be determined from the data base used to estimate the parameters b. 
Specifically the matrix u should to as great an extent as possible be the 
calculated residuals for the structural equations obtained from -the statistical 
estimation process utilized to determine the specification of the model. 
This technique implies a fuller use of the prior information available than 
if the disturbance terms were generated independently of the data base. 
Since meaningful results of this type of simulation are necessarily large 
sample" properties it will normally be necessary to generate disturbance 
matrices u from the presumed structural equation disturbance distributions in 
addition to those' obtained from the data base as calculated residuals in the 
estimation process. This proceeds unless it is possible to generate data 
for the model within the context of the model. In this latter case 
estimation of the parameters should be done with respect to the entire set 
of data used in the simulation. 

Solution of equations 3-6 are necessary for evaluation of the 
objective function at each stage of the simulation procedure given a 
policy (that is for each specification of u). This is probably best 
obtained through one of the gradient techniques while choice of a direction 
and length of movement in terms of the policy vectors x is probably best 
done through one of the non-gradient approaches. This arises for several 
reasons. Consider the resetting situation if a gradient approach were 
utilized for movements in terms of policy. Within the context of stochastic 
simulation there is initially the prior problem of what, if any, meaning the 
concept of the gradient can have for a stochastic function. If h(y) 
is continuous and g(y.,x,b,u) is continuous where the distribution 
functions are continuous in the disturbance terms u and the variables 
y,x, and u are all defined with connected domains then the risk function 
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r(x,T) will be continuous, and the gradient ...for any policy specification" 
x will be well defined in the usual manner. However for any T •„• that T; 

n3 

is for any empirical frequency distribution, the risk function r(x,T^) 
will.not have .gradients that are well defined'as the distribution T will 
necessarily be discrete. Since it is the risk functionr(x,T) we are 
ultimately .concerned with the existence of gradients ..for: r(x,T ) is not "' 
.really of direct interest. What is of direct relevance in any gradient-
method approach is obtaining, approximations of .the gradient for a specific 
policy x, e.g. the gradient of r(x,T), based upon the information 
available from the various functions r(x,T ) where both x and T are n n 
variables. Rephrasing this, any potential gradient method approach which is 
to be utilized in stochastic simulation is necessarily interested in 
obtaining good statistics which attempt to measure the gradient at the 
various, policy vectors.- To this author's knowledge the estimation of a ' 
gradient for either .a ..known or unknown function has not been analysed-' 
within thê  relevant.-literature and thus pertinent criteria have "not been 
developed for evaluating the worth of alternative statistical techniques'. 

• Since, the-, dimensionality: of. x is equal to. (m)(n) ••• this implies - -
that since.the risk function.is not known'a priori near any policy x that 
at least. (m){a) evaluations of. the risk function near the current policy'-x 
• need; to .be., evaluated to even consider using a gradient method. That is " 
to approximate,,the- gradient it will prove necessary to estimate the risk 
function .in,.̂ 11 of. the possible directions of movement, the extent to 
which a move in a particular direction being taken is determined by the 
increase.in the risk function in this direction. If the number of 
experiments taken in each direction is small then there will very 
likely be a significant problem with outliers arising in the sample; 
outliers carrying, a disproportionate.weight in. evaluating the risk function 
when the sample in any direction is small. Since the number of directions, 
equal to Im)(n) in number will normally be quite large the chance of 
outliers.occurring in one or more directions.will be significant; thus 
implying that, in small samples our estimation of the gradient can be 
significantly misleading, especially if the variance of T^ is large 
for small n. Since the efficiency of. any gradient procedure explicitly 
depends upon correct specification of the gradient at a point this can 
have serious consequences. A series of movements" of a stochastic 
gradient algorithmic in the proper direction can be totally eliminated 
by one 'bad-' move made by misestimation' of the gradient. . Also since 
(m)(n) will probably be a large number a-direct search procedure, by ; 
moving, immediately to another point to be evaluated, can utilize mn '>•• 
evaluations at this new point resulting in r(x,T ) which can be 
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close to r(x,T). This direct movement, involving approximately the same 
number of calculations, yields an estimate of r(x,T) whereas the 
gradient approaches might still be considering a direction of movement. 
Thus it is recommended that the second stage of the stochastic maximization 
procedure be one of the non-gradient approaches previously mentioned. 

As an overall algorithmic stochastic maximization strategy once a 
model has been specified, estimated, an initial policy specified, and the 
necessary error terms drawn from the underlying error distributions 

is first to determine which of the., available techniques best 
serves as the solution technique for equations 3-5. This can be done by 
specifying a value of S to be achieved in equation '3-4D and seeing 
which of the alternatives chosen performs best on an average basis. Most 
likely the best technique will depend both upon the specification of the 
model and the form of equation 3-4D as well as the value of S desired; 
however due to the paucity of Monte-Carlo studies in this area it is 
conceivable that one techn ique will turn out to be superior in the majority 
of potential applications. In this regard current research being under-
taken by the author examines this point peripherally (see section 4 ). 
Once the technique of approximation for the first stage of the stochastic 
maximization procedure has been determined it is recommended that either 
the Sequential Simplex technique be applied or the Complex Method where the 
initial error allowable on y, namely y be set rather large and the number 
of determinations at each policy be rather small (perhaps 10 evaluations of 
alternative error terms). 

In relationship to the sequential simplex technique the error 
allowable to y should be decreased and the sample size should be increased 
once a terminal simplex is reached. In the original specification of the 
complex method stopping only occurred when five consecutive equal function 
evaluations occurred. This clearly is not feasible with an objective 
function that is a random variable, i.e., r(x,y,T^). It is suggested here 
that both y be more closely specified and n increase once five given 
consecutive function evaluations fall within two standard deviations of 
the minimal standard error of these five policies. Thus both of these 
algorithmic processes would become more 'refined1 the closer th<=y 
approached a solution. Also the above suggestions are easily programmed 

*+» Applications 

Currently the author is attempting to find both an efficient 
technique for solution of a large macroeconomic model in terms of policy 
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for a well-defined set of policy objectives. Specifically the author, 
in conjunction with support from, the University of Nairobi and the 
Government of Kenya, will apply the theoretical analysis outlined here 
in determination of the size, scope, and distribution of fiscal policy to be 
derived from an already existing macroeconomic model of the Kenyan economy. 
It;is hoped that besides fulfilling these objectives that several of the 
alternatives suggested in this analysis' which seem viable as potential 
stochastic- maximization algorithms for macroeconomic models can be compared 
through a Monte-Carlo study sometime in the near future. 
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