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Abstract 

Poverty has many dimensions, which, in practice, are often binary or ordinal in nature. A number of 
multidimensional measures of poverty have recently been proposed that respect this ordinal nature. 
These measures agree that the consideration of inequality across the poor is important, which is typically 
captured by adjusting the poverty measure to be sensitive to inequality. This, however, comes at the cost 
of sacrificing certain policy-relevant properties, such as not being able to break down the measure across 
dimensions to understand their contributions to overall poverty. In addition, compounding inequality 
into a poverty measure does not necessarily create an appropriate framework for capturing disparity in 
poverty across population subgroups, which is crucial for effective policy. In this paper, we propose 
using a separate decomposable inequality measure – a positive multiple of variance – to capture 
inequality in deprivation counts among the poor and decompose across population subgroups. We 
provide two illustrations using Demographic Health Survey datasets to demonstrate how this inequality 
measure adds important information to the adjusted headcount ratio poverty measure in the Alkire-
Foster class of measures. 
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1. Introduction 

The progress of a society remains incomplete without improving the conditions of those stricken 

with poverty. It is commonly agreed that there are three important aspects of poverty – incidence, 

intensity and inequality – that should receive practical consideration. 1  Any policy design for 

alleviating poverty and the relevant outcome may be influenced by the mechanism used for assessing 

the progress of the poor, which is normally a poverty measure. Whether a poverty measure captures 

incidence, intensity or inequality has large consequences for the incentives of a policy maker. A 

measure that only captures the incidence of poverty but neither the intensity of poverty nor the 

inequality across the poor (e.g.,  a headcount ratio measure like the 2005 UNICEF child poverty 

index or the $1.25/day poverty rate in the single-dimensional context) would create incentives for a 

policy maker, who is keen on showing a large reduction in overall poverty, to improve the lives of 

those who are least poor, but it would implicitly create incentives to deliberately ignore those who 

experience the severest poverty. On the other hand, a measure such as the global Multidimensional 

Poverty Index (MPI) published in the UNDP‟s Human Development Reports, which captures the 

incidence and also the intensity of poverty, provides an incentive to policy makers to address the 

poorest as well as the least poor. But it does not give over-riding incentives to the policy maker to 

prioritize the conditions of the poorest. Even with similar levels of overall poverty alleviation, one 

may seek to ascertain whether the fruit of poverty alleviation has been shared uniformly or equally 

across different population subgroups within a society. This is important in order to avoid 

aggravating horizontal inequality (Stewart 2008). Again, existing methodologies like the MPI, which 

are decomposable by subgroup, may be used to check the changes in performance of different 

subgroups separately but may not provide any conclusive response regarding the disparity across 

subgroups.  

Since the seminal work of Sen (1976), a number of poverty measures reflecting all three aspects have 

been proposed in the context of unidimensional income poverty measurement.2 However, there is a 

growing consensus that the measurement of poverty should not be confined to any single 

dimension, such as income, because poverty has multiple facets or dimensions. This understanding 

of the multidimensional nature of poverty has caused interest in the analysis of multidimensional 

poverty to grow significantly and a number of poverty measures have been proposed with the 

                                                             
1 Jenkins and Lambert (1997) refer these three aspects as „three I‟s of poverty‟. 
2 See Thon (1979); Clark, Hemming, and Ulph (1981); Chakravarty (1983); Foster, Greer and Thorbecke (1984), and Shorrocks 
(1995). 
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objective of improving its understanding and assessment. One branch of measures has been 

constructed under the assumption that dimensions are cardinal in nature (Chakravarty, Mukherjee 

and Ranade 1998; Tsui 2002; Bourguignon and Chakravarty 2003, Massoumi and Lugo 2008). The 

wider application of these measures may be limited by the fact that many dimensions are ordinal in 

practice or binary in nature. This has led to the development of another branch of measures that 

takes into consideration this practical nature – ordinal and dichotomous – of dimensions (Alkire and 

Foster 2007, 2011; Bossert, Chakravarty and D‟Ambrosio 2009; Jayaraj and Subramanian 2009; 

Rippin 2012). We refer to this second branch of measures as counting measures of multidimensional 

poverty following the extensive literature (Atkinson 2003). These measures concentrate on counting 

the number of dimensions to identify the poor. The counting approach to the measuring of 

multidimensional poverty is our focus in this paper. 

It may be quite straightforward to capture inequality among the poor within each dimension for 

measures using cardinal data, but such liberty is greatly circumscribed when dimensions are ordinal 

and dichotomous. Yet inequality among the poor can still be captured through the extent of the 

simultaneous deprivations that they suffer. This is a natural starting point, when each person‟s 

deprivation profile is summarized in a cardinally meaningful score that shows the weighted sum of 

their deprivations, and can be used to assess inequality, as we shall show.  

A common approach to capture inequality among the poor in both unidimensional and 

multidimensional frameworks has been to adjust a poverty measure so that it is sensitive to 

inequality. This approach has also been adopted while developing many counting-based measures 

(see Bossert, Chakravarty and D‟Ambrosio 2009, Jayaraj and Subramanian 2009, Rippin 2012). This 

approach, however, may suffer from certain limitations in practice. First, inequality-adjusted poverty 

indices necessarily compromise a crucial policy-relevant property that allows overall poverty to be 

expressed as a weighted average of dimensional deprivations (Alkire and Foster 2013).3 Second, 

because of this, the inequality-adjusted poverty indices are useful for poverty comparisons across 

space and time, but the overall index may become rather intricate to interpret and the underlying 

policy message may become difficult to convey. Third, some of the inequality-adjusted poverty 

indices are broken down into different partial indices – each separately capturing the incidence, 

intensity, and inequality across the poor – in order to study how they contribute to overall poverty. 

                                                             
3 This property is referred to as factor decomposability by Chakravarty, Mukherjee and Ranade (1998) and dimensional breakdown by 
Alkire and Foster (2011). 
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One limitation of this approach is that it does not provide the appropriate framework to capture 

disparity in poverty across population subgroups. This is because an overall improvement in poverty 

may come with a reduction in inequality among the poor and with a more uniform reduction in 

intensities across the poor, but, simultaneously, come with a large non-uniform improvement in 

poverty across different population subgroups.  

In this paper, we propose using a separate inequality measure, rather than an inequality-adjusted 

poverty measure, in order to assess inequality across the poor and also to capture disparity in 

poverty across and within population subgroups. In particular, we propose a separate inequality 

measure that is consistent with and can accompany the widely used counting poverty measure, the 

adjusted headcount ratio proposed by Alkire and Foster (2011 – henceforth AF). The adjusted 

headcount ratio is an intuitive index for measuring multidimensional poverty, which can be 

expressed as a product of the incidence and intensity of poverty among the poor.4 Our proposed 

measure of inequality among the poor, as we will subsequently show, can create a policy-amiable 

poverty assessment mechanism that builds on the AF method and provides more direct policy 

information than can be gained by incorporating inequality into a poverty measure itself. 

Which inequality measure would serve our purpose best depends on an important methodological 

consideration and the properties that the measure should satisfy. We now turn to describe these 

properties that undergird our selection of a variance-based inequality measure.  

The important methodological consideration is whether inequality across deprivation counts should 

be measured in relative or absolute terms. When the inequality measure is relative, then multiplying 

all deprivation counts by the same factor leaves overall inequality unchanged. On the other hand, 

when the inequality measure is absolute, then adding a deprivation to everybody‟s deprivation count 

leaves overall inequality unaltered. Most income inequality measures have been relative, but this 

trend has been the subject of debate (Kolm 1976). In the counting approach framework, we argue 

that inequality across deprivation counts should be measured in absolute terms, largely because each 

deprivation may arguably have a direct or even intrinsic importance. In fact, we show that any 

                                                             
4 The adjusted headcount ratio, a counting poverty measure proposed by Alkire and Foster (2011), has already seen a number of 
applications by international organizations and country governments. The United Nations Development Programme has used it to 
introduce the Global Multidimensional Poverty Index (MPI) into their annual Human Development Reports (Alkire and Santos 2010); the 
Colombian, Mexican and Bhutanese governments have used this measure to create their official poverty measures (Foster 2007; 
CONEVAL 2011; Angulo, Diaz and Pardo 2011); the Government of Bhutan also adapted the measure to create the Gross National 
Happiness Index (Alkire, Ura, Wangdi and Zangmo 2012). 
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relative inequality measure may result in contradictory conclusions in a counting approach 

framework depending whether the attainments of the poor are counted or their deprivations. 

In order to fit our goal of studying both inequality among the poor within population subgroups and 

disparity between population subgroups, we require the inequality measure to be additively 

decomposable. This means that the inequality measure can be broken down into a within-group and 

a between-group component. Using certain additional but relevant properties, we show that the only 

reasonable absolute inequality measure that fits our purpose is a positive multiple of “variance”. The 

additive decomposability property allows overall inequality to be decomposed into a total within-

group and a between-group component. The total within-group component can be expressed as a 

population-share weighted average of the within-group inequalities. As a result, total within-group 

inequality does not change if there is no change in inequality within any of the population 

subgroups. An additional feature of the inequality measure is that it reflects the same level of 

inequality whether poverty is assessed by counting deprivations or counting attainments.  

We support our methodological development with two empirical illustrations: a cross-country 

illustration using 23 Demographic Health Surveys (DHS) and an inter-temporal illustration in the 

Indian context by classifying the population into various mutually exclusive and collectively 

exhaustive population subgroups. For both illustrations, we use the global MPI and its parametric 

specifications. In the cross-country illustration, despite a positive association between the MPI and 

the level of inequality among the poor across countries, we found several instances in which low 

levels of MPI was not accompanied by lower inequality. In one instance, we found that the MPI of 

Colombia is less than one-seventh of Lesotho‟s MPI but the level of inequality across the poor is 

almost the same. In another instance, we find that Kenya‟s MPI is much lower than Bangladesh‟s 

MPI and both have similar level of inequality across the poor, but the disparity in sub-national MPIs 

is much larger in Kenya than in Bangladesh. This shows why we also need to study the regional 

disparities in poverty in addition to studying inequality across the poor. In the inter-temporal 

illustration, we find that the MPI reductions across different population subgroups were not 

necessarily accompanied by corresponding reductions in inequality across subgroups. For instance, 

when the Indian population was classified into four major caste categories, both the incidence and 

intensity of poverty went down in each category, but inequality across the poor did not. 
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The rest of the paper proceeds as follows. In Section 2, we introduce the notation that we use in the 

rest of the paper. We then review various existing ways of reflecting inequality in poverty 

measurement based on counting approaches in Section 3. In Section 4, we obtain the inequality 

measure that is suitable for capturing inequality across the multidimensionally poor in a counting 

approach framework and is decomposable across population subgroups. We discuss various 

decomposition formulations of the inequality measure to study inequality among the poor and 

disparity across population subgroups in Section 5. The empirical illustrations are given in Section 6. 

Concluding remarks are provided in Section 7. 

2. Notation 

In this section, we introduce the notation that we will be using in the rest of our paper. We assume 

that our hypothetical society contains 𝑛 ≥ 2 persons and their wellbeing is assessed by a fixed set of 

𝑑 ≥ 2 indicators.5 We use subscript 𝑖 to denote persons and subscript 𝑗 to denote dimensions. The 

achievement of person 𝑖  in dimension 𝑗  is denoted by 𝑥𝑖𝑗 ∈ ℝ+  and the achievement matrix is 

denoted by 𝑋 ∈ ℝ+
𝑛×𝑑 . The set of all achievement matrices of size 𝑛 is denoted by 𝒳𝑛  and the set of 

all possible matrices of any size is denoted by 𝒳 =  𝒳𝑛𝑛 . We denote the deprivation cutoff of 

dimension 𝑗  by 𝑧𝑗 ∈ ℝ++  such that person 𝑖  is considered deprived in dimension 𝑗  whenever 

𝑥𝑖𝑗 < 𝑧𝑗  and non-deprived if 𝑥𝑖𝑗 ≥ 𝑧𝑗 . The 𝑑 deprivation cutoffs are summarized in vector 𝑧 and 

the set of all possible deprivation cutoff vectors are summarized by 𝓏. 

For any 𝑋 ∈ 𝒳, person 𝑖 is assigned a deprivation status value of 𝑔𝑖𝑗 = 1 in dimension 𝑗 if 𝑥𝑖𝑗 < 𝑧𝑗  and 

𝑔𝑖𝑗 = 0 otherwise for all 𝑗 = 1, … , 𝑑 and 𝑖 = 1, … , 𝑛. A relative weight of 𝑤𝑗  is assigned to each 

dimension 𝑗 based on its value relative to other indicators, such that 𝑤𝑗 > 0 and  𝑤𝑗𝑗 = 1. The 

weights are summarized by vector 𝑤. The deprivation score of person 𝑖 is obtained by the weighted 

average of the deprivation status values and is denoted by 𝜋𝑖 =  𝑤𝑗𝑔𝑖𝑗𝑗 . Thus, 𝜋𝑖 ∈ [0,1] for all 𝑖. 

The deprivation scores of all 𝑛 persons in the society is summarized by vector 𝜋 = (𝜋1, … , 𝜋𝑛).6 An 

alternative approach may be to attach an attainment status value of 𝑔 𝑖𝑗 = 1 to person 𝑖 in dimension 𝑗 

                                                             
5 In many studies, the terms „dimensions‟ and „indicators‟ are used differently, where dimensions are assumed to be the pillars of 
wellbeing and each dimension is measured using one or more indicators. 
6 In this paper, we use a slightly different notation than Alkire and Foster (2011) to denote the deprivation vector and censored 

deprivation vector because of simplicity of presentation. Alkire and Foster (2011) denote the deprivation score vector by 𝑐 and the 

censored deprivation score vector by 𝑐(𝑘). In this paper, we use notation 𝑐 to denote the censored deprivation vector instead. 
Therefore, we recommend caution when interpreting the results.  
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if 𝑥𝑖𝑗 ≥ 𝑧𝑗  and 𝑔 𝑖𝑗 = 0 otherwise for all 𝑗 = 1, … , 𝑑 and 𝑖 = 1, … , 𝑛 (see Alkire and Foster 2013). 

Then, the attainment score of person 𝑖 is 𝜋 𝑖 =  𝑤𝑗𝑔 𝑖𝑗𝑗  and we summarize the attainment scores of all 

persons by vector 𝜋 . Note that for the same achievement matrix 𝑋 ∈ 𝒳, deprivation cutoff vector 

𝑧 ∈ 𝓏 and weight vector 𝑤, by construction 𝜋 𝑖 = 1 − 𝜋𝑖  for all 𝑖. 

In a counting approach framework, any person 𝑖 is identified as poor if 𝜋𝑖 ≥ 𝑘 for any poverty 

cutoff 𝑘 ∈ (0,1].7 Let us define the identification function for any person 𝑖 as 𝜌𝑖 𝑘 = 1 if 𝜋𝑖 ≥ 𝑘 

and 𝜌𝑖 𝑘 = 0, otherwise. We denote the post-identification censored deprivation score of person 𝑖 by 

𝑐𝑖 = 𝜋𝑖𝜌𝑖 𝑘  and the corresponding vector by 𝑐 = (𝑐1, … , 𝑐𝑛). Thus, 𝑐𝑖 = 𝜋𝑖  if 𝜋𝑖 ≥ 𝑘 and 𝑐𝑖 = 0, 

otherwise. Alternatively, a person can also be identified as poor through counting attainments, 

setting an equivalent poverty cutoff 𝑘 ∈ [0,1), and an identification function for any person 𝑖 such 

that 𝜌 𝑖(𝑘 ) = 1 if 𝜋 𝑖 ≤ 𝑘  and 𝜌 𝑖(𝑘 ) = 0, otherwise. A corresponding censored attainment-score 𝑐 𝑖  can 

also be obtained such that 𝑐 𝑖 = 𝜋 𝑖𝜌 𝑖(𝑘 ) and the corresponding vector is denoted by 𝑐 . For the same 

achievement matrix 𝑋 ∈ 𝒳, deprivation cutoff vector 𝑧 ∈ 𝓏 and weight vector 𝑤, by construction 

𝑐 𝑖 = 1 − 𝑐𝑖  for all 𝑖 whenever 𝑘 = 1 − 𝑘.  

Note that 𝑐 = 𝜋 for the union approach for identifying the poor. We denote the number of poor 

after identification by 𝑞  and the proportion of poor is denoted by 𝐻 = 𝑞/𝑛 . Without loss of 

generality, we assume that 𝑐1 ≥ ⋯ ≥ 𝑐𝑛 . Thus, if at least one person is identified as poor, then 

𝑐𝑖 > 0 for all 𝑖 ≤ 𝑞  and 𝑐𝑖 = 0 for all 𝑖 > 𝑞 . We summarize the deprivation scores of the poor 

persons by 𝑎 having 𝑞 elements such that 𝑎𝑖 = 𝑐𝑖  for all 𝑖 = 1, … , 𝑞. Similarly an attainment score 

vector 𝑎  may be constructed with 𝑞  elements such that 𝑎 𝑖 = 1 − 𝑎𝑖  for all 𝑖 . In this paper, we 

present the results using the deprivation counts rather than the attainment counts, but the results 

hold for any analysis using attainment counts as well. 

We also introduce the analogous subgroup notations in order to facilitate the decomposition 

analysis. We assume that there are 𝑚 ≥ 2 mutually exclusive and collectively exhaustive population 

subgroups within the society. The population subgroups may be geographic regions, castes or 

religious groups. The number of all persons and the number of poor persons in subgroup ℓ are 

denoted by 𝑛ℓ and 𝑞ℓ ≥ 1, respectively, for all ℓ = 1, … , 𝑚 such that  𝑛ℓ𝑚
ℓ=1 = 𝑛 and  𝑞ℓ𝑚

ℓ=1 = 𝑞. 

                                                             
7 If 𝑘 = 1, then it is the intersection approach. If 𝑘 ∈ (0, min𝑗⁡{𝑤𝑗 }], it is the union approach. If min𝑗{𝑤𝑗 } < 𝑘 < 1, it is the intermediate 

approach (Alkire and Foster 2011). 



Seth and Alkire Inequality among the Multidimensionally Poor using Ordinal Data 

 

7 
 

Vectors 𝑛 = (𝑛1, … , 𝑛𝑚 ) and 𝑞 = (𝑞1, … , 𝑞𝑚 ) summarize the subgroup population and subgroup 

poor population, respectively. The overall censored deprivation score vector and the censored 

deprivation score vector of the poor for subgroup ℓ are denoted by 𝑐ℓ  and 𝑎ℓ , respectively. As 

earlier, without loss of generality, we assume that within each subgroup ℓ, 𝑐𝑖
ℓ > 0 for all 𝑖 ≤ 𝑞ℓ if 

there is at least one poor in the subgroup and 𝑐𝑖
ℓ = 0 for all 𝑖 > 𝑞ℓ.  

We denote the mean of all elements in any vector 𝑥 by 𝜇(𝑥). Then, 𝜇(𝑐) is the adjusted headcount ratio 

and 𝜇(𝑎) is the average deprivation scores among the poor following the terminology of Alkire and 

Foster (2011). In fact, 𝜇 𝑐 = 𝐻 × 𝜇(𝑎). Note that 𝜇 𝑐 =  𝜈ℓ𝜇(𝑐ℓ)ℓ  and 𝜇 𝑞 =  𝜃ℓ𝜇(𝑐ℓ)ℓ , 

where 𝜈ℓ = 𝑛ℓ/𝑛 is the population share of subgroup ℓ to the total population and 𝜃ℓ = 𝑞ℓ/𝑞 is the 

share of poor of the subgroup ℓ  to total poor population. Finally we define vectors 𝜇
𝑐

=

(𝜇 𝑐1 , … , 𝜇 𝑐𝑚  ) and 𝜇
𝑎

= (𝜇 𝑎1 , … , 𝜇 𝑎𝑚  ). 

3. Consideration on Inequality among the Poor with Ordinal Data 

Poverty can be mitigated by reducing its incidence or by reducing its intensity, but neither ensures 

that the reduction would benefit those poor with the highest deprivation scores. How can the 

concern for inequality be incorporated in the counting approach framework? It is customary, 

following Sen (1976), to fine-tune a poverty measure to be sensitive to inequality across the poor, 

whether it is unidimensional or multidimensional. 8  In a multidimensional analysis of poverty, 

inequality across the poor can be captured within each dimension when dimensions are cardinal. 

However, in this paper, our primary focus is counting approaches where dimensions can be cardinal, 

binary, or ordinal. In these approaches, inequality across the poor can be captured across their 

deprivation scores. Let us first review the proposed approaches for capturing inequality among the 

poor in counting approaches.  

Some of the methods integrate inequality into a poverty measure; whereas, others use a separate 

inequality measure. Bossert, Chakravarty and D‟Ambrosio (2009) propose using the extended 

symmetric means across the censored deprivation scores: 

                                                             
8 The inequality-adjusted unidimensional poverty indices are Sen (1976), Thon (1979), Clark, Hemming, and Ulph (1981), Chakravarty 
(1983), Foster, Greer and Thorbecke (1984), and Shorrocks (1995). The inequality-adjusted multidimensional indices are Chakravarty, 
Mukherjee and Ranade (1998), Tsui (2002), Bourguignon and Chakravarty (2003), Massoumi and Lugo (2008), Bossert, Chakravarty 
and D‟Ambrosio (2009), Jayaraj and Subramanian (2009), Alkire and Foster (2011) and Rippin (2012). 
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𝑃𝐵𝐶𝐷 𝜋 =  
1

𝑛
 𝜋𝑖

𝛽

𝑛

𝑖=1

 

1/𝛽

; with 𝛽 ≥ 1. (3.1) 

 

For 𝛽 = 1 , 𝑃𝐵𝐶𝐷 𝜋 = 𝜇(𝜋) , but for 𝛽 ≥ 2 , the measure assigns higher weights to larger 

deprivation scores and thus is sensitive to inequality across the poor.  

Similarly, while proposing a measure of social exclusion, Chakravarty and D‟Ambrosio (2006) 

examine a class of additively decomposable poverty indices: 

 
𝑃𝐶𝐷 𝜋 =

1

𝑛
 𝜋𝑖

𝛽

𝑛

𝑖=1

; with 𝛽 ≥ 1. (3.2) 

 

This class of indices is analogous to the Foster-Greer-Thorbecke (FGT) class of poverty indices in 

the unidimensional framework. Jayaraj and Subramanian (2009) apply the class of indices in 

Equation (3.2) to analyze multidimensional poverty in the Indian context. This measure can be 

expressed in various ways. Following Aristondo et al. (2010), it can be expressed as: 

 𝑃𝐶𝐷 𝜋 = 𝐻 × 𝜇 𝑎𝑈 ×  1 + 𝛽 1 − 𝛽 𝐺𝐸 𝑎𝑈; 𝛽  , (3.3) 

 

where 𝑎𝑈  is the vector of deprivation scores of the poor identified by a union approach, 𝐺𝐸(𝑎𝑈; 𝛽) 

is the generalized entropy measure of order 𝛽 .9For 𝛽 = 2 , 𝐺𝐸(𝑎𝑈 ; 𝛽) is related to the squared 

coefficient of variation. While, for 𝛽 = 2 , Chakravarty and D‟Ambrosio (2006) express their 

measure as: 

 𝑃𝐶𝐷 𝜋 = 𝜍2 𝜋 +  𝜇 𝜋  2 = 𝐻 × [𝜍2 𝑎𝑈 +  𝜇 𝑎𝑈  2], (3.4) 

 

where, 𝜍2 stands for variance. 

                                                             
9 The generalized entropy measure of order 𝛽 can be written as 𝐺𝐸 𝑎, 𝛽 =  𝑞−1   𝑎𝑖/𝜇 𝑎  

𝛽
− 1𝑞

𝑖=1  /[𝛽(1 − 𝛽)]. Rippin (2012) 

uses the same measure to develop the correlation-sensitive index and shows the decomposition. In the single-dimension context, the 
FGT index can be broken down into the headcount ratio, income gap ratio and Generalized Entropy measure of order two (Foster 
and Sen 1997, Aristondo et al. 2010). Similarly, the Sen-Shorrocks-Thon index can be broken down into the headcount ratio, income 
gap ratio and Gini coefficient (Xu and Osberg 2001). 
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Note that both Chakravarty and D‟Ambrosio (2006) and Bossert, Chakravarty and D‟Ambrosio 

(2009) use an index of poverty that is sensitive to inequality across the poor. There also exist 

empirical studies that use a separate inequality measure to capture inequality across the poor. For 

example, while studying child poverty using a counting approach, the standard deviation has been 

used by Delamonica and Minujin (2007) in order to study inequality (or severity) in deprivation 

counts among poor children.10  

The approaches that integrate inequality into poverty measures are primarily useful for ranking 

regions in terms of overall poverty, discounting for inequality among the poor. For example, Jayaraj 

and Subramanian (2009) found that the ranking of Indian states altered when inequality-sensitive 

poverty indices were used instead of a poverty index insensitive to inequality. The ranking altered 

because of the levels of inequality across deprivation counts among the poor within different states 

were different. If the indices are, in addition, additively decomposable, then this means that overall 

poverty can be expressed as a population-weighted average of subgroups‟ poverty. This is helpful in 

understanding how different subgroups have contributed to overall poverty in a particular period 

and how they have contributed to the overall change in poverty.  

These integrated approaches may, however, have certain limitations. First, the inequality-adjusted 

poverty indices may lack intuitive interpretation. For example, the adjusted headcount ratio (Alkire 

and Foster 2011) of a society can be intuitively interpreted as the share of deprivations experienced 

by the poor out of the maximum possible deprivations within the society. The index can be 

presented as a product of the incidence and intensity of poverty among the poor. The inequality-

adjusted poverty indices may lack such intuitive appeal in general.  

Second, it has been shown in Alkire and Foster (2013) that a counting measure of poverty cannot be 

sensitive to the breadth of the distribution of deprivation counts and be broken down by dimensions 

at the same time.11 The property of dimensional breakdown allows one to express overall poverty as 

a weighted average of dimensional deprivations (among the poor). The dimensional breakdown 

property thus enables one to understand the contribution of each dimension to overall poverty, as 

well as how dimensional changes contribute to overall changes in poverty, and indeed has important 

policy relevance.  

                                                             
10 The approach has been followed by Roche (2013) while studying child poverty in Bangladesh. 
11 The dimensional breakdown property of Alkire and Foster (2011) is similar in spirit to the factor decomposability property of 
Chakravarty, Mukherjee and Ranade (1998). 
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Third, the inequality-adjusted poverty measures often involve an inequality aversion parameter. The 

particular value that the parameter should take depends on how averse an evaluator is to inequality 

among the poor. The inequality aversion parameter discounts for larger inequality by increasing the 

overall poverty index. Thus, for the same distribution across the poor, a more inequality-averse 

evaluator would conclude more poverty in the distribution that what a less inequality-averse 

evaluator would. Depending on the particular value of the parameter chosen, one may have different 

ranking of regions. Hence, this involves additional parametric decision-making, which can be a 

subject of significant debate.  

Fourth, a poverty measure that combines incidence, intensity and inequality into one may not make 

transparent the relative weight that the measure places on each of these aspects. And that is 

important. For example, two different expressions of the poverty measure proposed by Chakravarty 

and D‟Ambrosio (2006) in (3.3) and (3.4) would attach quite different weights to incidence, intensity 

and inequality across the poor for 𝛽 = 2, depending on whether the value judgment of inequality is 

absolute or relative. We discuss various implications of this value judgment in the next section.12 

While it is certainly better to have lower inequality among the poor than high inequality among the 

poor, even with low inequality across the poor it is far better to have this situation with a low than a 

high average intensity. Of course, the fundamental aim of poverty reduction is not to reduce 

inequality among the poor, nor the intensity of poverty. Rather, it is to eradicate poverty, bringing 

the incidence to zero. Combined measures, however, rarely make the relative importance of these 

policy goals transparent.  

Fifth, the inequality-adjusted poverty measures do not provide an appropriate framework for 

studying disparity in poverty across different population subgroups, even when poverty measures are 

additively decomposable. The consideration of disparity in poverty between subgroups is no less 

important than inequality in deprivation counts among the poor, because a large disparity in poverty 

across subgroups may reflect large horizontal inequality and thus may create an environment for 

potential conflict across groups, which may have further adverse consequences on poverty (Stewart 

2010). A similar level of poverty may be accompanied by a very different level of subgroup 

disparities or a large overall reduction in poverty may be accompanied by an increasing disparity 

across subgroups. For example, Alkire, Roche, and Seth (2011) found that Malawi and Senegal, 

                                                             
12 In fact, Zheng (1994) shows in the single-dimensional context that the only poverty index that is both absolute and relative is 
related to the headcount ratio and that there can be no meaningful index of inequality that can be both relative and absolute. 
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which have similar population sizes, the same number of sub-national regions, and similar MPI 

values, had very different levels of sub-national disparity. Alkire and Seth (2013) found that a strong 

reduction in national MPI in India between 1999 and 2006 was accompanied by non-uniform 

reductions in multidimensional poverty across different social and regional subgroups. 

The disparity in poverty across subgroups should not be misunderstood as between-group inequality 

among the poor or the disparity in subgroups‟ intensities. In welfare analysis, an additively 

decomposable inequality measure can be expressed as a sum of a total within-group inequality 

component and a between-group inequality component. But the between-group inequality among 

the poor is not the same as disparity in poverty across subgroups. In fact, a reduction in inequality 

among the poor may be accompanied by a reduction in between-group inequality among the poor 

but with an increase in disparity in poverty across subgroups.  

Let us consider the following simple example with a ten-person hypothetical society containing two 

subgroups – Subgroup A and Subgroup B – having five persons each. To keep it simple, we assume 

that every dimension is equally weighted and a person is identified as poor by union criterion. 

Suppose the deprivation score vector of the society is (0, 0, 0, 0.6, 0.6, 0.6, 0.6, 0.6, 0.7, 0.7). The 

deprivation count vector of Subgroup A is (0, 0, 0.6, 0.6, 0.7) and that of Subgroup B is (0, 0.6, 0.6, 

0.6, 0.7). Clearly, there exists inequality in deprivation scores among the poor within each subgroup 

and inequality in average deprivation scores among the poor between two subgroups. Besides, any 

poverty measure satisfying standard properties ensures that Subgroup B will have more poverty than 

Subgroup A.  

Now, suppose that over time, the overall deprivation score vector is transformed to (0, 0, 0, 0.6, 0.6, 

0.6, 0.6, 0.6, 0.6, 0.6), which implies a reduction in inequality across the poor. If the transformed 

deprivation count vectors of Subgroups A and B are (0, 0, 0, 0.6, 0.6) and (0.6, 0.6, 0.6, 0.6, 0.6), 

respectively, then certainly inequality in deprivation scores among the poor within each subgroup 

has gone down along with a reduction in inequality in average deprivation scores among the poor 

between the two subgroups. However, it is harder to argue that disparity in poverty between these 

two subgroups has gone down. This particular concern is not only applicable to measures using a 

counting approach but also applies to single-dimensional inequality-adjusted poverty measures. 

In sum, the integrated poverty measures are certainly useful for ranking. For example, Jayaraj and 

Subramanian (2009) use the integrated poverty measures in (3.2) to the Indian context and show 
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how the rankings of states change when the aversion towards inequality (denoted by parameter 𝛽) 

vary. However, the integrated approach has certain limitations as discussed above. Some of the 

integrated measures are broken down into components related to incidence, intensity and inequality 

among the poor, but without making the relative weight attached to these components transparent. 

In fact, if there is a need to break down the final unintuitive figure of the integrated poverty 

measures into different components and the integrated poverty measures fail to satisfy certain policy 

amiable properties, such as dimensional breakdown, then why one ought not to use a separate 

inequality measure to study inequality among the poor besides using an intuitive but informative 

measure to assess poverty. Thus, in this paper, we propose using a separate inequality measure to 

study and decompose inequality across the poor. The next section justifies our choice of which 

inequality measure should be used. 

4. Which Inequality Measure? 

Using a counting approach to assess multidimensional poverty, inequality may be assessed at 

different levels: (i) inequality in deprivation scores across the poor, (ii) inequality in deprivation 

scores between the poor and the non-poor, (iii) inequality in the level of poverty (or an associated 

partial index) between population subgroups, and (iv) inequality in deprivation scores among the 

poor across subgroups. Thus, the overall inequality across deprivation scores within a society may 

have several components. Some take into account inequality within populations or population 

subgroups (referred as within-group inequality) and some take into account inequality between the 

subgroup means (referred as between-group inequality).  

The inequality measure that should be used depends on the desirable properties that it should 

satisfy. Let us denote the inequality measure by 𝐼. We discuss the properties in terms of a general 𝑡-

dimensional vector 𝑥 , such that 𝑥𝑖 ∈ [0,1] for all 𝑖 = 1, … , 𝑡 . Depending on situations, vector 𝑥 

may represent vectors 𝜋, 𝜋 , 𝑐, 𝑐 , 𝑎 or 𝑎  and symbol 𝑡 may represent 𝑛 or 𝑞 as required, introduced 

in Section 2. The corresponding subgroup notations and operators introduced in Section 2 equally 

applies to 𝑥 and 𝑡.  

Given that we are interested in within-group and between-group inequalities, it is meaningful for the 

inequality measure to be additively decomposable so that overall inequality can be expressed as a sum of 

total within-group inequality and between-group inequality. Let us denote the within-group term by 
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𝐼𝑊  and the between group term by 𝐼𝐵 . The overall within-group inequality can be expressed as a 

weighted average of within-group inequalities of the population subgroups, i.e., 𝐼𝑊 𝑥 =

 𝜔ℓ 𝑡, 𝜇
𝑥
 𝐼(𝑥ℓ)𝑚

ℓ=1 , where 𝜔ℓ(𝑡, 𝜇
𝑥

) is the weight attached to inequality within subgroup ℓ.13 The 

between-group term can be expressed as 𝐼𝐵 𝑥 = 𝐼(𝜇
𝑥

; 𝑡) , where 

𝐼 𝜇
𝑥

; 𝑡 = 𝐼(𝜇 𝑥1 1𝑡1
, … , 𝜇 𝑥𝑚  1𝑡𝑚 )  and 1𝑡ℓ  is the 𝑡ℓ -dimensional vector of ones for all 

ℓ = 1, … , 𝑚. The between-group inequality can be interpreted as the inequality across deprivation 

scores when everybody within each subgroup suffers the mean deprivation score of that subgroup. 

Additive Decomposability: For deprivation score vector 𝑥,  

𝐼 𝑥 = 𝐼𝑊 𝑥 + 𝐼𝐵 𝑥 =  𝜔ℓ 𝑡, 𝜇
𝑥
 𝐼 𝑥ℓ 

𝑚

ℓ=1

+ 𝐼(𝜇
𝑥

; 𝑡). 14 

What does it imply when the weight attached to a within-group term depends on subgroup means? It implies that if 

the mean deprivations of the subgroups change disproportionately, but the level of inequality and 

the population shares within these subgroups do not change, the share of within-group inequality to 

overall inequality may change without any justifiable reason. In order to avoid such circumstances, we 

impose a restriction such that the overall within-group inequality should not change when the 

inequality level and population size of each group remains unchanged but subgroup means change 

disproportionately. 

Within-group Mean Independence: For any two deprivation score vectors 𝑥 and 𝑥′, if 𝑡ℓ = 𝑡′ℓ 

and 𝐼 𝑥ℓ = 𝐼 𝑥′
ℓ  for all ℓ = 1, … , 𝑚, then 𝐼𝑊 𝑥 = 𝐼𝑊 𝑥′ .15 

The third property, which decides whether the concept of inequality across deprivation scores 

among the poor should be judged in a relative or in an absolute sense, is crucial. If the normative 

assessment of inequality depends on absolute distance, then a change in every poor person‟s 

deprivation score by the same amount leaves the level of inequality unchanged. If, on the other hand, 

the assessment of inequality is relative, then a change in every poor person‟s deprivation score by the 

                                                             
13 Note that weight to subgroups denoted by 𝜔ℓ(𝑡, 𝜇𝑥 ) for subgroup ℓ is different from the weights attached to each dimension and 

denoted by 𝑤𝑗  for dimensions 𝑗. 
14  This is the usual definition of additive decomposability also used by Shorrocks (1980), Foster and Shneyerov (1999), and 
Chakravarty (2001). 
15 Note that the property is analogous to the path independence property of Foster and Shneyerov (2000) for relative inequality measures. 
The within-group mean independence property does not require an index to be absolute or relative a priori. The additive 
decomposability property along with the within-group mean independence implies path independence. 
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same proportion leaves the level of inequality unchanged. As stated earlier, relative inequality has 

frequently been used with income. Atkinson (1970) proposed considering inequality in a relative 

sense in order to make the measure of inequality independent of mean. The other appealing reason 

in favor of relative inequality measures is that they satisfy the property of unit consistency (Zheng 

2007), which requires that if the variable under consideration is expressed in different units, the 

inequality ordering should not change. Kolm (1976), on the other hand, discussed the social 

disadvantages of considering inequality in a relative than an absolute sense. 

The value judgment of relative inequality is difficult to justify across deprivation scores. Let us 

consider the following three examples. For simplicity, we assume there are ten dimensions that are 

equally weighted and a union approach is used for identification. In the first example, suppose there 

are two poor persons in the society with deprivation score vector 𝑥 = (0.2, 0.5). Suppose, over 

time, the deprivation score vector becomes 𝑥′ = (0.4, 1), which means that the first poor person 

become deprived in two additional dimensions, whereas, the poorer person become deprived in five 

additional dimensions. It is hard to argue that inequality between the two poor persons has not 

changed. In fact, if the second poor person had become deprived in four instead of five additional 

dimensions, it would have even been harder to argue that inequality between the two poor persons 

had gone down, which would have been an obvious conclusion reached by any relative inequality 

measure.  

In a second example, suppose due to any dire consequence, every poor person in a hypothetical 

society becomes deprived in an additional dimension in which they were not deprived earlier. It is 

hard to argue that inequality among deprivation scores among the poor should have decreased, as 

would have been claimed by any relative inequality measure. Now consider a third example which 

shows that a relative inequality measure may provide contradictory conclusions about the direction 

of change in inequality depending on whether poverty is measured by counting attainments or 

deprivations. Consider the two censored deprivation score vectors 𝑐 = (0.3, 0.4, 0.5, 0.6)  and 

𝑐′ = (0.7, 0.8, 0.9, 1). Any relative inequality measure would conclude that there is higher inequality 

in 𝑐  than in 𝑐′ . Whereas, if we use the corresponding attainment score vectors 

𝑐 = (0.7, 0.6, 0.5, 0.4) and 𝑐 ′ = (0.3, 0.2, 0.1, 0), respectively, then inequality is higher in 𝑐 ′ than 

that in 𝑐  according to the same relative inequality measure. Thus, whether a society has less or more 

inequality among the poor depends on whether they are identified as poor by counting their 



Seth and Alkire Inequality among the Multidimensionally Poor using Ordinal Data 

 

15 
 

deprivations or counting their attainments. This type of ambiguity is hard to justify. The only way to 

reflect the same level of inequality in this situation is to use an absolute inequality measure. 

In order to incorporate our value judgment for absolute inequality, we, thus, require that inequality 

should remain unaltered when everybody‟s deprivation score increases by the same amount. The 

deprivation scores obtained from counting dimensions are already independent of any unit of 

measurement and so the unit consistency property is also not appealing in this situation. An absolute 

inequality measure must satisfy the translation invariance property. 

Translation Invariance: For the deprivation score vector 𝑥  such that max𝑖 𝑥1, … , 𝑥𝑡 ≤ 1 − 𝜀 

and 𝜀 ≥ 𝛿 > 0, 

𝐼 𝑥 = 𝐼 𝑥 + 𝛿1𝑡 . 

Note that the property has been slightly modified in comparison with how it is usually presented. 

This is because the deprivation scores are bounded above and cannot be increased indefinitely. In 

order to increase everybody‟s deprivation score by an amount 𝛿, the largest deprivation score should 

be such that it can be increased by 𝛿 and still does not surpass the upper bound.  

There are a few additional well-known properties we deem essential to providing a well-behaved 

structure for the inequality measure: 

Anonymity: If the deprivation score vector 𝑥′ is a permutation of the deprivation score vector 𝑥, 

then 

𝐼 𝑥′ = 𝐼 𝑥 . 

Replication Invariance: If the deprivation score vector 𝑥′ is obtained from the deprivation score 

vector 𝑥 by replicating 𝑥 more than once, then 

𝐼 𝑥′ = 𝐼 𝑥 . 

Normalization: For the deprivation score vector 𝑥 such that 𝑥𝑖 = 𝛿 ∈ [0,1] for all 𝑖 = 1, … , 𝑡, 

𝐼 𝑥 = 0. 
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Transfer Principle: If the deprivation score vector 𝑥′ is obtained from the deprivation score vector 

𝑥 by a regressive transfer, then 

𝐼 𝑥′ > 𝐼 𝑥 . 

The anonymity property requires that an inequality measure should not change by a permutation of 

deprivation scores across the society. The replication invariance property requires that the inequality 

measure should enable comparison across societies with different population sizes. Technically, if a 

society is obtained from another society by a merely duplicating or replicating the entire population 

with the same deprivation score vector, then the level of inequality should be the same. The 

normalization property is a calibration property, which requires that if everybody in the society has the 

same deprivation score, then the inequality measure should be equal to zero. Finally, an inequality 

measure must respect some version of the transfer principle property. This fundamental property 

requires that an inequality measure should increase due to a regressive transfer. What is a regressive 

transfer? Suppose, 𝑥′ is obtained from 𝑥, such that 𝑥
𝑖 ′
′ = 𝑥𝑖 ′ − 𝛿 ≥ 0, 𝑥

𝑖 ′′
′ = 𝑥𝑖 ′′ + 𝛿 ≤ 1, 𝑥𝑖 ′ < 𝑥𝑖 ′′ , 

𝛿 > 0 and 𝑥𝑖
′ = 𝑥𝑖  for all 𝑖 ≠ 𝑖 ′, 𝑖 ′′ . Then, 𝑥′ can be stated to be obtained from 𝑥  by a regressive 

transfer across deprivation scores. One may question how a transfer is possible between non-

transferable deprivation scores or attainment scores as it is possible between incomes.  

Let us discuss the relevance of the transfer principle in the counting approach framework in terms 

of association between dimensions. Satisfying the transfer principle implies that inequality should 

increase due to multidimensional association increasing rearrangements between the poor in terms of the 

deprivation status values 𝑔𝑖𝑗 . To explain this concept, suppose the censored deprivation status values of 

all 𝑡 persons in 𝑑 dimensions are summarized by the 𝑡 × 𝑑-dimensional matrix 𝑔(𝑘). Thus, the 𝑖𝑗th 

element of 𝑔(𝑘) is 𝑔𝑖𝑗 (𝑘) = 𝑔𝑖𝑗 × 𝜌𝑖 𝑘 . When we consider all persons within a society, i.e., 𝑡 = 𝑛. 

In this case, the 𝑔𝑖𝑗 (𝑘) = 0 even when person 𝑖 is deprived in dimension 𝑗 but not identified as 

poor by the poverty cutoff 𝑘. For the union approach, 𝑔𝑖𝑗 (𝑘) = 𝑔𝑖𝑗  for all 𝑖 and 𝑗. When we focus 

only on those who have been identified as poor, i.e.,  𝑡 = 𝑞, then matrix 𝑔 only contains deprivation 

status values of the poor people. We denote the 𝑖th row of matrix 𝑔(𝑘) by 𝑔𝑖⋅ and the 𝑗th column by 

𝑔⋅𝑗 .  
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A matrix 𝑔′(𝑘) is obtained from matrix 𝑔(𝑘) by an association increasing rearrangement among the 

poor if the set of poor persons remain unchanged, yet 𝑔′(𝑘) ≠ 𝑔(𝑘), 𝑔′(𝑘) is not a permutation of 

𝑔(𝑘), and there exist two persons 𝑖  and 𝑖′ such that 𝑔
𝑖 ′·
′ = (𝑔𝑖 ′·⋁ 𝑔𝑖 ′′·) , 𝑔

𝑖 ′′·
′ = (𝑔𝑖 ′· ⋀ 𝑔𝑖 ′′·), and 

𝑔𝑖⋅
′ = 𝑔𝑖⋅ for all 𝑖 ≠ 𝑖 ′, 𝑖 ′′. Operator ⋁ is the join of the two vectors 𝑔𝑖 ′· and 𝑔𝑖 ′′·, so that vector 𝑔

𝑖 ′·
′  

has the maximum of each of the 𝑑 elements; and operator ⋀ is the meet of vectors 𝑔𝑖 ′· and 𝑔𝑖 ′′·, so 

that vector 𝑔
𝑖 ′′·
′  has the minimum of each of the 𝑑 elements. If 𝑖′ has a larger deprivation score than 

𝑖′′ to begin with, then this type of transfer increases the distance between the deprivation scores of 

persons 𝑖 ′ and 𝑖 ′′ and so the inequality measure 𝑉 should increase. Thus, the association increasing 

rearrangement is a type of regressive transfer. We may refer to this property as increasing under 

increasing association.16  

Increasing under Increasing Association: If the deprivation score vectors 𝑥 and 𝑥′ correspond to 

deprivation status value matrices 𝑔(𝑘) and 𝑔′(𝑘), respectively, and 𝑔′(𝑘) is obtained from 𝑔(𝑘) by 

an association increasing rearrangement among the poor so that the set of poor remains unchanged, 

then 

𝐼 𝑥′ > 𝐼 𝑥 . 17 

The following proposition characterizes the desired class of inequality measures.  

Proposition: For any deprivation score vector 𝑥 and any 𝛼 > 0, an inequality measure 𝐼 satisfies 

anonymity, the transfer principle, replication invariance, additive decomposability, within-group 

mean independence  and translation invariance if and only if: 

 
𝐼 𝑥 =

𝛼

𝑡
 [𝑥𝑖 − 𝜇 𝑥 ]2

𝑛

𝑖=1

. 

 

(4.1) 

Proof: See Appendix.18 

                                                             
16 This property has been primarily motivated by Boland and Proschan (1988). For a different statement of this property in counting 
approach for poverty measurement see Alkire and Foster (2013) and for a related statement in the context of welfare measurement, 
see Seth (2013). For weaker versions of this property, see Tsui (2002) and Alkire and Foster (2011). 
17 This property can be equivalently stated in terms of (0-1) attainments rather than deprivations. 
18 The proposition is analogous to Theorem 1 of Chakravarty (2001). However, we do not assume differentiability and population 
share weighted decomposability as assumed by Chakravarty (2001). Instead, we use the Within-group Mean Independence property to 
prove the proposition.  
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Thus, the class of inequality measures that satisfies the desired properties is some positive multiple 

(𝛼) of what has been called “variance”.19  

The class of absolute inequality measures in (4.1) results in the same level of inequality whether 

people are identified as poor by counting the number of deprivations or alternatively by counting 

the number of attainments.20 

By construction, the minimum possible value that 𝐼(𝑥) takes is zero, which is attained when the 

mean deprivation score is shared by all. The maximum possible value that variance takes is one 

fourth of the range of the deprivation score vector, which is attained when half of the population 

have the lowest deprivation scores and the other half have the highest deprivation scores. The value 

of 𝛼 can be chosen in such a way that the value of the inequality measure is bounded between zero 

and one, as is true of any standard inequality measure. For example, suppose a counting measure 

uses five dimensions with equal weights and one is merely interested in the level of inequality among 

the poor. In this case, the deprivation scores among the poor range from 0.2 to 1, and so the 

maximum possible variance is 0.2. Thus, we should set 𝛼 = 1/0.2 = 5. Similarly, given that we are 

interested in exploring between-group disparity in poverty, which may range between zero and one, 

the maximum value that variance can take is 0.25 and so we choose 𝛼 = 4. Then, the inequality 

measure that we use for our analysis is: 

 
𝑉 𝑥 =

4

𝑡
 [𝑥𝑖 − 𝜇 𝑥 ]2

𝑛

𝑖=1

. 

 

(4.2) 

5. Inequality Decomposition in Poverty 

We now explore the possible and meaningful decomposition formulation of the inequality 

measure.21 To recall, the censored deprivation score vector 𝑐  has 𝑚 ≥ 2  mutually exclusive and 

collectively exhaustive population subgroups, where the population share of subgroup ℓ to total 

                                                             
19 Note that the unbiased sample estimate for variance is   𝑥𝑖 − 𝜇 𝑥  2𝑡

𝑖=1 /(𝑡 − 1), but this formulation does not satisfy population 
replication invariance. 
20 Alkire and Foster 2013 discuss the construction of an „attainment‟ matrix in more detail.  
21 In this paper, we obtain the decomposition results focusing on the censored deprivation score vector to show their relevance to a 
dual cutoff approach to poverty measurement. One may in theory, however, apply these decomposition expressions across non-
censored deprivation or attainment score vectors, where one may be interested in dividing the population using a vector of 
deprivation or attainment cutoffs but then study inequality decomposition across these two groups. 



Seth and Alkire Inequality among the Multidimensionally Poor using Ordinal Data 

 

19 
 

population is denoted by 𝜈ℓ and the share of poor in subgroup ℓ to total poor population by 𝜃ℓ. An 

immediate inequality decomposition that can be made is breaking down the overall inequality among 

the poor into a within-group and a between-group component. The following function decomposes 

the overall inequality among the poor, whose deprivation scores are summarized by vector 𝑎: 

 𝑉 𝑎 =   𝜃ℓ𝑉 𝑎ℓ 
𝑚

ℓ=1
 +  𝑉(𝜇

𝑎
; 𝑞) . (5.1) 

                Total Within-group   Between-group 

 

Thus the term 𝑉(𝑎) captures inequality among the poor. The first component in (5.1) captures the total 

within-group inequality among the poor; whereas, the second component captures the total 

between-group inequality or inequality across subgroup intensities. Following the definition in the 

previous section, the between-group term is  𝑉(𝜇
𝑎

; 𝑞) = 𝑉(𝜇 𝑎1 1𝑞1
, … , 𝜇 𝑎𝑚  1𝑞𝑚

) and 1𝑞ℓ
 is 

the 𝑞ℓ-dimensional vector of ones for all ℓ = 1, … , 𝑚, which can be expressed as:   

 𝑉 𝜇
𝑎

; 𝑞 = 4  𝜃ℓ 𝜇 𝑎ℓ − 𝜇 𝑎  
2

𝑚

ℓ=1

. (5.2) 

 

As we have argued in Section 3, merely looking at the between-group inequality does not provide 

the complete picture about disparity across subgroups. We have shown with an example that 

disparity in poverty may increase even when both within-group inequality and between-group 

inequality among the poor may have gone down. One way of incorporating the total within-group 

inequality among the poor and disparity across subgroup poverty is through applying the inequality 

measure to the censored deprivation score vector 𝑐. In fact, all counting poverty measures are based 

on the entire deprivation score vector 𝑐. For example, the adjusted headcount ratio poverty measure 

proposed by Alkire and Foster (2011) is obtained by taking an average across all elements of this 

vector. The inequality-adjusted poverty measures are also based on the deprivation score vector 𝑐 

presented in (3.1) and (3.2).  

The inequality measure 𝑉 applied on the entire censored deprivation score vector  𝑐 can also be 

decomposed into a within-group and a between-group component as: 
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 𝑉 𝑐 =   𝜈ℓ𝑉 𝑐ℓ 
𝑚

ℓ=1
 +  𝑉(𝜇

𝑐
; 𝑛) . (5.3) 

 

The function 𝑉 𝑐  captures inequality in deprivation scores across the society, but assuming that the non-

poor are assigned a deprivation score equal to zero. The first term on the right-hand side of equation 

(5.3) is the population-weighted inequality across the deprivation scores within subgroups and the 

second term captures inequality in averages of all deprivation scores across 𝑚 subgroups. Note that 

𝑉 𝜇
𝑐
; 𝑛 =  𝑉(𝜇 𝑐1 1𝑛1

, … , 𝜇 𝑐𝑚  1𝑛𝑚
)  and 1𝑛ℓ

 is the 𝑛ℓ -dimensional vector of ones for all 

ℓ = 1, … , 𝑚, where 𝜇(𝑐ℓ) is the adjusted headcount ratio poverty measure of subgroup ℓ and so the 

second term captures disparity in poverty across subgroups. As in (5.2), the between-group tem can 

be expressed as: 

 𝑉 𝜇
𝑐
; 𝑛 = 4  𝜈ℓ 𝜇 𝑐ℓ − 𝜇 𝑐  

2
𝑚

ℓ=1

. (5.4) 

 

The ℓth within-group inequality component 𝑉(𝑐ℓ) captures inequality across all elements in 𝑐ℓ and so 

it does not capture inequality only across the poor, which is important in order to understand 

whether a poverty alleviation policy has been equitable across the poor. To reflect inequality across 

the poor, the population within each subgroup can be divided into two further subgroups: the poor 

and the non-poor. The deprivation scores of all the poor in subgroup ℓ are summarized by 𝑎ℓ. Note 

that the average deprivation score among the poor, 𝜇(𝑎ℓ), is referred to as the intensity of poverty 

by Alkire and Foster (2011). The average deprivation score among the non-poor, however, is zero 

by the poverty focus property and hence, the term 𝑉(𝑐ℓ) for each subgroup ℓ is further decomposed 

as: 

 𝑉 𝑐ℓ =  
𝑞ℓ

𝑛𝑛ℓ
𝑉 𝑎ℓ  +  𝑉 𝜇 𝑎ℓ , 0  =  𝐻ℓ𝑉 𝑎ℓ  +  𝑉 𝜇 𝑎ℓ , 0  . (5.5) 

 

The first term on the right-hand side of (5.5) is the within-group inequality among the poor, which 

in this case is the headcount ratio or the share of the population poor in that subgroup (𝐻ℓ) times its 

within-group inequality among the poor (𝑉(𝑎ℓ)). Replacing the expression of 𝑉(𝑐ℓ) from (5.5) in 

(5.3), we obtain: 
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 𝑉 𝑐 = 𝐻 𝜃ℓ𝑉 𝑎ℓ 
𝑚

ℓ=1
+ 𝑉(𝜇

𝑐
; 𝑛) +  𝜈ℓ𝑉 𝜇 𝑎ℓ , 0 

𝑚

ℓ=1
. (5.6) 

 

Thus, the inequality measure 𝑉(𝑐) , which measures inequality in deprivation scores across the 

society, can be broken down into three components. The first is the total within-group inequality among 

the poor ( 𝜃ℓ𝑉 𝑎ℓ 𝑚
ℓ=1 ) times the share of the poor in the society (𝐻). The second component captures 

inequality or disparity between the subgroups’ adjusted headcount ratios (𝑉(𝜇
𝑐
; 𝑛)) as defined in (5.4). The third 

component represents the population-weighted average inequality between the poor and the non-poor in 

population subgroups, where 𝑉 𝜇 𝑎ℓ , 0  captures inequality between the average deprivation-score 

among the poor and the average deprivation-score among the non-poor, which is zero. Thus, 

𝑉 𝜇 𝑎ℓ , 0 = 4[𝐻ℓ 𝜇 𝑎ℓ − 𝜇 𝑐ℓ  
2

+  1 − 𝐻ℓ  𝜇 𝑐ℓ  
2
]. 

The first two components in (5.6) thus have clear interpretation and direct policy interest, but the 

interpretation of the third term, which captures inequality between poor and non-poor, is not 

straightforward. Expressing the term 𝑉 𝜇(𝑎ℓ),0 , which denotes the inequality between the average 

deprivation scores of the poor and the non-poor within subgroup ℓ, in two different ways can 

provide useful intuition. One way of expressing 𝑉 𝜇(𝑎ℓ),0  is:  

 𝑉 𝜇 𝑎ℓ , 0 = 4𝜇 𝑐ℓ  𝜇 𝑎ℓ  1 − 𝐻ℓ  . (5.7) 

 

Note that the population-weighted average of the average deprivation scores among the poor and 

the non-poor is 𝜇(𝑐ℓ) , i.e., 𝜇 𝑐ℓ = 𝐻ℓ × 𝜇 𝑎ℓ + (1 − 𝐻ℓ) × 0 , where 𝜇(𝑐ℓ)  is the adjusted 

headcount ratio of subgroup ℓ. The same adjusted headcount ratio,, however, can be obtained by 

different combinations of 𝐻ℓ or headcount ratio and 𝜇(𝑎ℓ) or the intensity. If the same adjusted 

headcount ratio is obtained by a lower headcount ratio  in combination with a higher intensity 

among the poor, then this term 𝑉 𝜇(𝑎ℓ),0  is larger. In other words, in this case, 𝜇(𝑐ℓ) is penalized 

by multiplying by both 𝜇(𝑎ℓ) and (1 − 𝐻ℓ). This is explained in Panel I of Figure 1. Suppose there 

are two distributions of deprivation scores 𝑐ℓ and 𝕔ℓ, such that 𝜇(𝑐ℓ) = 𝜇(𝕔ℓ) but 𝜇(𝕒ℓ) > 𝜇(𝑎ℓ) 

and so ℍℓ < 𝐻ℓ . Thus, 𝑉 𝜇(𝕒ℓ),0 >  𝑉 𝜇(𝑎ℓ),0 .22 

                                                             
22 We denote the headcount ratio of corresponding to distribution 𝕔 by ℍ and the vector of deprivation scores of the poor by 𝕒. 
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Figure 1: Graphical Representation for Inequality between the Poor and the Non-poor 

Panel I 

  
 Panel II 

   

 

Another way 𝑉 𝜇(𝑎ℓ),0  can be expressed as: 

 𝑉 𝜇 𝑎ℓ , 0 = 4  𝜇 𝑎ℓ  
2
 𝐻ℓ 1 − 𝐻ℓ  . (5.8) 

 

For a given value of the average deprivation scores 𝜇(𝑎ℓ) or intensity, the term 𝑉 𝜇(𝑎ℓ),0  is 

maximized when 𝐻 = 0.5. This means that inequality is maximized for a given 𝜇(𝑎ℓ) when there 

are two equal sized groups of poor and non-poor. This is explained in Panel II of Figure 1. Consider 

three distributions of deprivation scores 𝑐ℓ , 𝕔ℓ  and 𝒸ℓ  such that 𝜇(𝑎ℓ) = 𝜇(𝕒ℓ)  = 𝜇(𝒶ℓ) , 𝐻ℓ =

1/2, and ℍℓ = (1 − ℋℓ), but ℍℓ > 𝐻ℓ > ℋℓ.23 Thus, 𝑉 𝜇(𝑎ℓ),0  is larger than both 𝑉 𝜇(𝕒ℓ),0  

and 𝑉 𝜇(𝒶ℓ),0 . However, how to compare the same between 𝕔ℓ and 𝒸ℓ? The primary difference 

between 𝕔ℓ and 𝒸ℓ is that the population share has been swapped between the two groups so that 

the percentage of poor in one group is equal to the percentage of non-poor in other and vice versa 

with the same average deprivation scores among the poor. These two societies are considered to 

                                                             
23 We denote the headcount ratios of corresponding to distributions 𝕔 and 𝒸 by ℍ and ℋ, and the vectors of deprivation scores of 

the poor by 𝕒 and 𝒶, respectively. 

0  ( ℓ)  ( ℓ) 0  ( ℓ)= ( ℓ)  ( ℓ)

0  ( ℓ) 0  ( ℓ) 0  ( ℓ)
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have same inequality between the groups of poor and the non-poor. Thus, 𝑉 𝜇(𝕒ℓ),0 =

𝑉 𝜇(𝒶ℓ),0 .  

Although the second component in (5.6) has an intuitive interpretation, the first and the third terms 

are of the most policy interest: the overall within-group inequality among the poor and the disparity 

across subgroup poverty. Therefore, one may just be interested in focusing on these two terms 

controlling for the second term. We denote the summation of the two terms by: 

 𝕍(𝑐) = 𝐻 𝜃ℓ𝑉 𝑎ℓ 
𝑚

ℓ=1
+ 𝑉(𝜇

𝑐
; 𝑛). (5.9) 

 

Note that 𝕍(𝑐)  is not invariant to different subgroup classifications of the same population. 

Technically, for a particular subgroup classification, 𝕍(𝑐) can also be obtained by applying measure 

𝑉  to a transformed deprivation score vector 𝑐  such that 𝑐 𝑖
ℓ = 𝜇(𝑐ℓ)  if 𝑐𝑖

ℓ = 0  and 𝑐 𝑖
ℓ = 𝑐𝑖 −

[𝜇(𝑎ℓ) − 𝜇(𝑐ℓ)], otherwise, for all ℓ = 1, … , 𝑚 . In other words, the average of the deprivation 

score 𝜇(𝑐ℓ) is assigned to those who are not poor and the score 𝜇(𝑎ℓ) − 𝜇(𝑐ℓ) is taken away from 

the deprivation score of those who are poor. Note that as a result, 𝜇(𝑐ℓ) = 𝜇(𝑐 ℓ), 𝑉(𝑎ℓ) = 𝑉(𝑎 ℓ), 

but 𝑉(𝜇(𝑎ℓ),0) = 0 ∀ℓ and so, 𝕍 𝑐 = 𝑉(𝑐 ). Thus, if there are two hypothetical societies like 𝑐 

and 𝑐 , the total within-group inequality among the poor and the between-group disparity in poverty 

would be identical across these two societies. The decomposition expression in (5.9) allows us to 

understand how the contribution of each of these two terms has changed over time or vary across 

different countries. 

We should also point out that in theory there is another pathway, although less intuitive, to 

decompose the overall societal inequality across the censored deprivation scores 𝑉(𝑐). Note that in 

(5.6), we first divided the entire population into population subgroups and then each subgroup 

across poor and non-poor. In the second decomposition, we can divide the population first across 

poor and non-poor, and then divide each of these two groups into 𝑚 population subgroups. By 

decomposing the population across poor and non-poor, we obtain, 

 𝑉 𝑐 = 𝐻𝑉 𝑎 + 𝑉 𝜇 𝑎 , 0 . (5.10) 
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The second term 𝑉 𝜇 𝑎 , 0  captures the overall inequality between the poor and the non-poor. 

The first term is the total within-group inequality, which is merely equal to the within-group 

inequality among the poor times the population share of the poor (the headcount ratio). The term 

𝑉(𝑎) can be further decomposed into total within-group and between-group inequalities across 

subgroups as: 

 𝑉 𝑎 =   𝜃ℓ𝑉 𝑎ℓ 
𝑚

ℓ=1
 +  𝑉(𝜇

𝑎
; 𝑞) . (5.11) 

 

The first term  𝜃ℓ𝑉 𝑎ℓ 𝑚
ℓ=1  denotes the total within-group inequality among the poor and the 

second term 𝑉 𝜇
𝑎

; 𝑞  as defined in (5.2) captures the between-group inequality among the poor. 

Substituting (5.11) into (5.10) we obtain: 

 𝑉 𝑐 = 𝐻   𝜃ℓ𝑉 𝑎ℓ 
𝑚

ℓ=1
 + 𝐻 𝑉(𝜇

𝑎
; 𝑞) + 𝑉 𝜇 𝑎 , 0 . (5.12) 

 

The right-hand side of (5.12) also has three terms. The first term captures the total within-group 

inequality times the headcount ratio. The second term is the between-group inequality among the 

poor, as defined in (5.2), times their population share or the headcount ratio. The final term assesses 

the inequality between the average deprivation share among the poor and that of the non-poor. 

Comparing the decompositions of 𝑉(𝑐)  in (5.6) and (5.12), we can see that the first term, 

𝐻[ 𝜃ℓ𝑉(𝑎ℓ)𝑚
ℓ=1 ] , in each decomposition is the same, capturing the contribution of the total 

within-group inequality among the poor. The other two terms in each equation are not identical, 

however. In order to have a clearer understanding, we obtain vector 𝑐   from 𝑐 such that 𝑐𝑖
ℓ = 𝜇(𝑎ℓ) 

for all 𝑖 = 1, … , 𝑞ℓ and for all ℓ = 1, … , 𝑚. In other words, 𝑐  is a hypothetical distribution where 

each poor person within subgroup ℓ shares the same deprivation score 𝜇(𝑎ℓ). Note that 𝜇 𝑐  =

𝜇(𝑐), 𝜇 𝑎  = 𝜇(𝑎) and 𝜇(𝑐 ℓ) = 𝜇(𝑐ℓ) and 𝜇(𝑎 ℓ) = 𝜇(𝑎ℓ) for all ℓ. As a result, the first term in 

each of (5.6) and (5.12) is equal to zero. We now obtain the following two expressions: 

 𝑉 𝑐  =  𝜈ℓ𝑉 𝜇 𝑎ℓ , 0 
𝑚

ℓ=1
+ 𝑉(𝜇

𝑐
; 𝑛). (5.13) 
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and  

 𝑉 𝑐  = 𝐻 𝑉(𝜇
𝑎

; 𝑞) + 𝑉 𝜇 𝑎 , 0 . (5.14) 

 

If the elements in 𝑐  are first divided into 𝑚 subgroups, then the between-subgroup inequality is 

captured by 𝑉(𝜇
𝑐
; 𝑛) and the rest is captured by the within-group inequality. On the other hand, if 

the elements in 𝑐  are first divided into two groups – poor and non-poor – then 𝑉 𝜇 𝑎 , 0  is the 

between-group inequality and the rest captures the within-group inequality across the poor. The 

interpretation of 𝑉 𝜇 𝑎 , 0  is same as in (5.7) and (5.8). From (5.13), we capture between-group 

disparity in poverty 𝑉(𝜇
𝑐
; 𝑛) and from (5.14), we capture between-group inequality among the poor 

𝑉(𝜇
𝑎

; 𝑞).  

Now, what is the relation between 𝑉 𝜇 𝑎 , 0  and  𝜈ℓ𝑉(𝜇(𝑎ℓ),0)𝑚
ℓ=1 ? Is one always larger than 

the other? Not necessarily. First, assume a situation where there is no inequality in average 

deprivation scores across subgroups, then 𝑉(𝜇
𝑎

; 𝑞) = 0 . From (5.13) and (5.14), we obtain 

𝑉 𝜇 𝑎 , 0 =  𝜈ℓ𝑉(𝜇(𝑎ℓ),0)𝑚
ℓ=1 + 𝑉(𝜇

𝑐
; 𝑛). In this case, 𝑉 𝜇 𝑎 , 0 >  𝜈ℓ𝑉(𝜇(𝑎ℓ),0)𝑚

ℓ=1 . On 

the other hand, when 𝜇(𝑐ℓ) = 𝜇(𝑐 ′′ ℓ′
)  for all ℓ ≠ ℓ′ , then 𝑉(𝜇

𝑐
; 𝑛) = 0  and from (5.13) and 

(5.14), we obtain 𝐻 𝑉(𝜇
𝑎

; 𝑞) + 𝑉 𝜇 𝑎 , 0 =  𝜈ℓ𝑉(𝜇(𝑎ℓ),0)𝑚
ℓ=1  and  𝑉 𝜇 𝑎 , 0 <

 𝜈ℓ𝑉(𝜇(𝑎ℓ),0)𝑚
ℓ=1 . Finally, when there is no disparity in poverty and no inequality in average 

deprivation scores across subgroups, i.e., both 𝑉(𝜇
𝑎

; 𝑞) = 0 and 𝑉(𝜇
𝑐
; 𝑛) = 0, then 𝑉 𝜇 𝑎 , 0 =

 𝜈ℓ𝑉(𝜇(𝑎ℓ),0)𝑚
ℓ=1 . 

6. Applications using the Global Multidimensional Poverty Index 

We now present two illustrations on how to analyze inequality across the poor and disparity in 

poverty across subgroups. In the first illustration, we present a cross-sectional analysis of inequality 

across the poor and sub-national disparity in multidimensional poverty using the DHS dataset for 23 

countries. In the second illustration, we present an inter-temporal analysis of inequality in 

multidimensional poverty in the Indian context using the DHS datasets across two periods. For both 

examples, we use the global MPI or a variant of it as a measure of poverty.24  

                                                             
24 The global MPI was developed by Alkire and Santos (2010) in collaboration with the United Nation Development Programme‟s 
Human Development Report Office (HDRO) and uses the adjusted headcount ratio. 
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 An Illustration with Cross-Country Analysis 

For the cross-sectional analysis, we use the DHS of 23 countries, which are a subset of 104 countries 

whose MPI was reported in the 2013 Human Development Report. The survey years range between 

2007 and 2011 and use all ten indicators reported in Table 1 for measuring poverty.25 In order to 

preserve strict comparability across countries, we have chosen not to use surveys other than DHS 

nor to include countries that have Demographic Health Surveys but with fewer than ten indicators. 

The weight vector 𝑤  is presented in the second column and the deprivation cutoff vector 𝑧  is 

summarized in the third column of the table. A person is identified as poor if the person‟s 

deprivation score is equal or higher than 1/3. The global MPI can be expressed as a product of the 

incidence or multidimensional headcount ratio and the intensity or average deprivation share among the 

poor. 

Table 1: Indicators, Weights and Deprivation Cutoffs of the Global MPI 

Indicator  Weight Deprivation Cutoff 

Schooling 1/6 No household member has completed five years of schooling 

Attendance 1/6 
Any school-aged child in the household is not attending school up to class 
8 

Nutrition 1/6 
Any woman or child in the household with nutritional information is 
undernourished 

Mortality 1/6 Any child has passed away in the household 

Electricity 1/18 The household has no electricity 

Sanitation 1/18 
The household’s sanitation facility is not improved or it is shared with other 
households 

Water 1/18 
The household does not have access to safe drinking water or safe water 
is more than a 30-minute walk (round trip) 

Flooring material 1/18 The household has a dirt, sand or dung floor 

Cooking fuel 1/18 The household cooks with dung, wood or charcoal 

Assets 1/18 
The household does not own more than one of: radio, telephone, TV, bike, 
motorbike or refrigerator; and does not own a car or truck 

Source: Alkire, Roche, Santos, and Seth (2011). 

 
Table 2 analyzes inequality among the poor and disparity across sub-national MPIs for 23 countries, 

which are ranked by their MPI values reported in the fourth column. The third and the fifth 

columns present the incidence and the intensity of poverty, respectively. The sixth column reports 

the overall inequality among the poor, which can be broken down into two components: the total 

within-group inequality and the between-group inequality among the poor. The total within-group 

inequality, presented in the seventh column, is the population-weighted average of sub-national 

within-group inequalities. Notice that the between-group inequality among the poor, reported in the 

                                                             
25 The surveys need to be representative at the sub-national level and satisfy a few other criteria reported in Alkire, Roche and Seth 
(2011). 



Seth and Alkire Inequality among the Multidimensionally Poor using Ordinal Data 

 

27 
 

eighth column, is the inequality across sub-national intensities of poverty and not the disparity in 

sub-national MPIs, which are presented in the final column of the table. 

Table 2: Inequality across the Poor and Between-group Disparity 

1 2 3 4 5 6 7 8 9 

Country Year Incidence MPI Intensity 
Inequality 

(Poor) 

Total 
Within-
Group 

Between 
Intensity 

Between 
MPI 

Jordan 2009 2.4% 0.008 34.4% 0.005 0.005 0.000 0.000 

Dominican Republic 2007 4.6% 0.018 39.4% 0.025 0.022 0.002 0.001 
Colombia 2010 5.4% 0.022 40.9% 0.041 0.037 0.003 0.001 

Guyana 2009 7.7% 0.030 39.2% 0.023 0.021 0.003 0.004 
Bolivia 2008 20.5% 0.089 43.7% 0.044 0.042 0.002 0.006 

Ghana 2008 31.2% 0.144 46.2% 0.066 0.059 0.006 0.038 
Sao Tome and 
Principe  2009 34.5% 0.154 44.7% 0.053 0.052 0.000 0.006 
Lesotho 2009 35.3% 0.156 44.1% 0.042 0.040 0.001 0.014 

Zimbabwe 2011 39.1% 0.172 44.0% 0.045 0.044 0.001 0.021 

Cambodia 2010 45.9% 0.212 46.1% 0.068 0.064 0.004 0.023 
Nepal 2011 44.2% 0.217 49.0% 0.083 0.082 0.001 0.010 

Kenya 2009 47.8% 0.229 48.0% 0.076 0.070 0.005 0.025 
Bangladesh 2007 57.8% 0.292 50.4% 0.071 0.070 0.001 0.003 

Nigeria 2008 54.1% 0.310 57.3% 0.135 0.111 0.024 0.128 

Zambia 2007 64.2% 0.328 51.2% 0.085 0.080 0.005 0.052 
Malawi 2010 66.7% 0.334 50.1% 0.074 0.073 0.001 0.002 

Rwanda 2010 69.0% 0.350 50.8% 0.078 0.077 0.001 0.017 
Madagascar 2009 66.9% 0.357 53.3% 0.080 0.074 0.005 0.042 

Timor Leste 2009 68.1% 0.360 52.9% 0.095 0.089 0.006 0.053 
Senegal 2011 74.4% 0.439 58.9% 0.130 0.107 0.023 0.092 

Sierra Leone 2008 77.0% 0.439 57.0% 0.101 0.095 0.007 0.056 

Liberia 2007 83.9% 0.485 57.7% 0.106 0.095 0.011 0.049 
Ethiopia 2011 87.3% 0.564 64.6% 0.129 0.126 0.002 0.039 

 

Although the level of poverty in terms of the MPI and inequality across the poor are positively 

associated across 23 countries, there are certain interesting exceptions. Let us look at the comparison 

between Colombia and Lesotho. Colombia has a much lower level of MPI (0.022) and only 5.4 

percent of the population is poor; whereas Lesotho‟s MPI (0.156) is more than seven times larger 

with 35.3 percent of the population being poor. However, when we compare these two countries‟ 

levels of inequality among the poor, these two countries are almost equally unequal. Similarly, 

inequality among the poor in Nepal, whose MPI value is 0.217 with 44.2 percent of the population 

being poor, is worse than that of Madagascar whose MPI value is 0.357 with 66.9 percent of the 

population being poor. Of all 23 countries, inequality among the poor is highest in Nigeria – larger 

than the countries with much higher poverty levels. 
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Next, we explore sub-national disparities within these 23 countries, which naturally may depend on 

the number of regions and their population sizes. The cross-country figures show empirically that 

merely decomposing overall inequality among the poor into a within-group component and a 

between-group component does not provide the entire picture on how diverse sub-national regions 

are in terms of poverty. Consider the comparison between Bolivia and Zimbabwe, which have 

similar numbers of sub-national regions. Both countries also have similar levels of overall inequality 

among the poor and similar sub-national disparity across intensities of poverty. In fact, Bolivia 

appears to be marginally more unequal in terms of sub-national intensities. This does not mean, 

however, that sub-national regions are more unequal in terms of the level of MPIs. We find that 

sub-national disparity in Zimbabwe is more three times larger than that in Bolivia. Similarly, Zambia 

and Madagascar appear to have similar levels of disparity across sub-national intensities. However, 

disparity across sub-national MPIs is larger in Zambia, despite the number of sub-national regions in 

Madagascar being more than double that of Zambia. In fact, we do not find any statistical 

relationship between the number of sub-national regions and disparity across sub-national regions.  

An Illustration with Inter-temporal Analysis in India 

Our second illustration presents an inter-temporal analysis of inequality among the poor and 

disparity in MPIs across castes in India. Various studies on multidimensional poverty in India have 

shown recently that poverty has gone down between the 1990s and early 2000s (Jayaraj and 

Subramanian 2009, Alkire and Seth 2013, Mishra and Ray 2013). Both Jayaraj and Subramanian 

(2009) and Misha and Ray (2013) use the measure proposed by Chakravarty and D‟Ambrosio (2006) 

in (3.2). These studies find that the national reduction in multidimensional poverty has not been 

accompanied by uniform reductions across different population subgroups. When inequality-

sensitive poverty measures are used to capture inequality in deprivation scores across the poor, then 

Jayaraj and Subramanian find that the ranking of population subgroups changed. The rank of a 

subgroup deteriorated if the reduction in poverty had not been equitable across the poor. Alkire and 

Seth found that the population subgroups (be they states, castes or religious groups) that were 

poorest in 1999 reduced poverty the least in the next seven years.  

None of these studies, however, explicitly explored if overall inequality among the poor or the 

disparity in poverty across populations has gone down. In this second illustration, we use the slightly 
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modified version of the global MPI.26 We use two rounds of nationally representative Demographic 

Health Surveys (DHS) for years 1998/99 and 2005/06. The DHS for year 2005/06 has also been 

used by Alkire and Santos (2010) to compute the global MPI for India.27 It is evident from Table 3 

that poverty, in terms of MPI, as well as the intensity went down between 1999 and 2006. The 

national MPI went down from 0.300 in 1999 to 0.251 in 2006; whereas, the intensity went down 

from 52.9 percent to 51.7 percent.  

Table 3: Inequality Decomposition across the Poor (Castes) 

 
1999  2006 

 

Share 
of 

Poor 
𝑴𝟎 𝑨 

Inequality 
among 

the Poor 
 

Share 
of 

Poor 
𝑴𝟎 𝑨 

Inequality 
among 

the Poor 

India 100% 0.300 52.9% 0.100  100% 0.251 51.7% 0.097 

Scheduled Castes 22.1% 0.378 55.0% 0.107  22.9% 0.307 52.6% 0.098 
Scheduled Tribes 12.6% 0.458 57.0% 0.110  12.9% 0.417 56.3% 0.115 
OBCs 33.3% 0.301 52.1% 0.095  42.1% 0.258 50.8% 0.090 
General 32.0% 0.229 50.6% 0.089  22.0% 0.164 49.7% 0.092 

  
 

  
     

Total Within-group 
 

 
 

0.098     0.096 
Within group Contribution 

 
 

 
98.0%     98.3% 

Between-group 
 

 
 

0.0020     0.0017 
Between-group Contribution 

 
 

 
2.0%     1.7% 

 

We further delve into whether the reduction in inequality among the poor has been obtained by a 

reduction in disparity in poverty across subgroups. In order to do so, we look at the inequality 

decomposition using equation (5.9) with two components: the total within-group inequality among 

the poor times their population share (the headcount ratio) and disparity in poverty (MPI) across 

castes. Table 4 shows that the disparity in MPIs across castes has not gone down, unlike a large 

reduction in the proportion of poor and a reduction in the inequality among the poor. Therefore, 

the contribution of the between-group disparity in poverty, based on the decomposition formulation 

in (5.9), has clearly increased. 

Table 4: Inequality across the Poor and Disparity in Poverty across Castes 

Year 
𝑯 

Within-Group  
(Poor) 

Within-Group 

 × 𝑯 

Disparity in 
MPI 

1999 56.8% 0.100 0.057 0.021 
Contribution 

  
72.5% 27.5% 

2006 48.5% 0.097 0.047 0.021 
Contribution 

  
68.7% 31.3% 

                                                             
26 The modifications were made in the definition of four indicators – attendance, mortality, nutrition, and flooring material – in order 
to preserve strictly comparability. However, it uses the same set of deprivation cut-offs and weights. See Alkire and Seth (2013). 
27 Given that samples in DHS2 covering 80.5 percent of the population were collected in 1999, and in DHS3 covering 92.6 percent of 
the population were collected in 2006, we consider 1999 and 2006 as the reference years for the surveys. 
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To illustrate the inequality decomposition, we divide the population first by four caste categories: 

Scheduled Castes (SC), Scheduled Tribes (ST), Other Backward Classes (OBC), and General. The 

𝑀0 and 𝐴, although not uniformly, went down for each of the four subgroups. The picture is not as 

encouraging when we look at inequality across the poor. At the national level, the inequality across 

the poor went down from 0.100 to 0.097, but inequality across the poor did not go down within all 

subgroups. It went down within scheduled castes and OBCs, but not within scheduled tribes and the 

general category. The bottom half of Table 3 reports the decomposition of overall inequality across 

the poor into total within-group and between-group components following equation (5.1). There has 

been a reduction in both within-group inequality and between-group inequality, but the contribution 

of the between-group component has decreased slightly. Thus, Table 1 shows that although both 

the overall within-group inequality and the between-group inequality have gone down, inequality 

across the poor within the poorest subgroup has gone up. 

Table 5: Inequality across the Poor and Disparity in Poverty for Different population 
Subgroups 

 

1999  2006 

Subgroups 
Total Within-

group 
Between-

group (Poor) 
 

Total Within-
group 

Between-
group (Poor) 

Caste 0.098 0.0020  0.096 0.0017 

contribution 98.0% 2.0%  98.3% 1.7% 

Religion 0.099 0.0005  0.096 0.0009 

contribution 99.5% 0.5%  99.0% 1.0% 

States 0.094 0.0053  0.091 0.0065 

contribution 94.7% 5.3%  93.3% 6.7% 

Head's Education 0.090 0.0091  0.089 0.0084 

contribution 90.8% 9.2%  91.4% 8.6% 

Household Size 0.098 0.0013  0.095 0.0020 

contribution 98.7% 1.3%  98.0% 2.0% 

 
Within-group 

× 𝑯 
Between 𝑴𝟎  

Within-group 

× 𝑯 
Between 𝑴𝟎 

Caste 0.055 0.021  0.046 0.021 

contribution 72.1% 27.9%  68.3% 31.7% 

Religion 0.056 0.004  0.047 0.004 

contribution 93.0% 7.0%  91.5% 8.5% 

States 0.054 0.031  0.044 0.041 

contribution 63.0% 37.0%  51.9% 48.1% 

Head's Education 0.051 0.070  0.043 0.064 

contribution 42.3% 57.7%  40.1% 59.9% 

Household Size 0.056 0.005  0.046 0.008 

contribution 92.3% 7.7%  84.9% 15.1% 
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We extend these two inequality decomposition frameworks to other population subgroups grouped 

by religion, state, household head‟s education, and household size. Although, the total within-group 

inequality, albeit to a greater or smaller extent, has gone down for all subgroups, between-group 

inequality has not. This is evident from the upper half of Table 5. Besides castes, the between-group 

inequality among the poor went down across education categories of household heads.  

In the lower half of the table we report the second kind of inequality decomposition, analyzing 

disparity in MPIs across different subgroup classifications. The disparity in MPIs across religious 

groups appears to be much lower compared to that of across castes, but the disparity across religious 

groups did not go down between 1999 and 2006. Strikingly, disparity in MPIs across states clearly 

increased between 1999 and 2006, which supports the finding of other studies. 

7. Concluding Remarks 

There have been recent developments in both theory and practice in the measurement of 

multidimensional poverty based on counting approaches. The categorical or binary nature of 

dimensions and the fact that the counting measures of poverty are based on direct deprivations 

make the use the counting approaches more amicable. Even in counting approaches, however, it is 

important that all three „I‟s of poverty – incidence, intensity, and inequality among the poor – are 

incorporated. If the object of a policy maker is to reduce only the incidence of poverty, then only 

the marginally poor people would be driven out of poverty ignoring the poorest of the poor 

completely. If the objective is to reduce both the incidence and intensity of poverty, then while the 

policy maker has no reason to focus on the marginally poor instead of the poorest of the poor, the 

policy maker has no strong incentive to assist the poorest of the poor either. It is only when the 

consideration of inequality is brought to the table that a policy maker has greater incentives to assist 

the poorest of the poor. 

The most common approach to incorporating inequality into poverty measurement has been to 

adjust a poverty measure in such a way that the measure is sensitive to distributional changes among 

the poor. This approach, however, has certain limitations. First, the inequality-adjusted poverty 

measures may lack intuitive interpretations. Second is that it does not allow the possibility of 

breaking down a counting measure by dimensions in order to understand the contribution of each 

dimension to overall poverty, as shown by Alkire and Foster (2011). Third, the integrated measures 



Seth and Alkire Inequality among the Multidimensionally Poor using Ordinal Data 

 

32 
 

often involve selecting a particular value of an inequality-aversion parameter, which often becomes a 

subject of debate. Fourth, a poverty measure that combines incidence, intensity and inequality into 

one may not make transparent the relative weight that the measure places on each of these aspects. 

Finally, this approach does not give a clear picture about the disparity in poverty between population 

subgroups. 

In this paper, thus, we suggest the use of a separate inequality measure to capture inequality among 

the poor and disparity across population subgroups. Then the question is, which inequality measure 

is to be used? Our choice of inequality measure is determined by certain desirable properties, in 

addition to the standard properties of inequality measures, that we require it to satisfy. We first 

require that the inequality measure is additively decomposable so that it can be expressed as a sum of 

total within-group inequality and between-group inequality. Moreover, the total within-group 

inequality should not change as long as the inequality within each population subgroup does not 

change. Second, we require that inequality across deprivation scores to remain unchanged when the 

deprivation score increases by the same amount rather than by the same factor. In other words, we 

require that inequality should be perceived through absolute distances between deprivation scores 

rather than relative levels. The only inequality measure that satisfies our requirements is a positive 

multiple of variance. 

We provide two illustrations to show the application of the inequality measure to analyze inequality 

among the poor and disparity across population subgroups. In our first illustration, we use the DHS 

of 23 developing countries around the world. Although we find that the level of inequality among 

the poor and the level of poverty in terms of the MPI are positively associated across these 

countries, there were several exceptions. For example, Colombia‟s MPI was less than one-seventh of 

Lesotho‟s but with the same level of inequality among the poor. Similarly, the MPI of Madagascar 

was more than 50 percent larger than that of Nepal, but inequality among the poor in Nepal was 

much higher.  

Moreover, we show that looking at the sub-national inequality in intensity of poverty is not enough. 

It conceals the high level of disparity that exists across sub-national MPIs. For example, Bolivia and 

Zimbabwe have similar levels of between-group inequality across the poor, but sub-national 

disparity in Zimbabwe is more than three times worse than that in Bolivia. Our illustration on India 

also shows a similar result but through an inter-temporal analysis. When decomposed across castes, 
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we find that although the MPI and its components – the incidence and the intensity of poverty – 

went down for each subgroup, the inequality among the poor became higher for the poorest 

subgroup – the Schedule Tribes. 

So what is the value added of using the proposed inequality measure? First, the inequality measure 

adds valuable information to the adjusted headcount ratio proposed by Alkire and Foster (2011), 

which has been adopted by international organizations and country governments without sacrificing 

the dimensional breakdown property that allows understanding the contribution of each dimension 

to overall poverty. Second, the inequality measure does not involve any inequality-aversion 

parameter, whose selection may cause wide disagreement among policy makers. Thus, the additive 

decomposability property allows overall poverty to be decomposed into within-group and between-

group components. Although the contribution of within-group and between-group components to 

overall poverty is subject to debate (Kanbur 2006), it is not difficult to argue that understanding 

their change over time and across countries may provide valuable information. Finally, the inequality 

measure reflects the same level of inequality whether the poor are identified in an 

achievement/attainment space or in a deprivation space. 

At the same time, this research agenda raises a number of interesting questions regarding the 

dynamics of inequality among the poor. For example, in situations in which the intensity of poverty 

is exceedingly high – approaching 100 percent – then progress in reducing the intensity of poverty is 

likely to involve a temporary increase in inequality among the poor as the intensity of deprivations 

for some are reduced. Using the proposed inequality measure „variance‟ alongside the adjusted 

headcount ratio will enable researchers to identify various patterns of progression of inequality 

among the poor in different countries and to link these to other patterns such as conflict, migration, 

and local or regional activities. It will also be interesting to compare multidimensional „variance‟ with 

income inequality among the income poor in order to assess whether diverse kinds of inequality 

among the poor converge or diverge.   
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8. Appendix 

The proof has two parts: sufficiency and necessity. For the first, it is straightforward to show that 

the inequality measure 𝐼 𝑥 =
𝛼

𝑡
 [𝑥𝑖 − 𝜇 𝑥 ]2𝑛

𝑖=1  satisfies anonymity, the transfer principle, 

replication invariance, subgroup decomposability, within-group mean independence, and translation 

invariance. 

Let us show that this is the only inequality measure that satisfies the five properties. If an inequality 

measure satisfies population share weighted decomposability, then it satisfies the decomposability property 

introduced by Shorrocks (1984), which requires that the overall inequality measure should be 

expressed as a function of subgroup means, subgroup population sizes, and subgroup inequality 

levels.  

Now, the theorem in Bosmans and Cowell (2010) shows that the only class of inequality measures 

that satisfies anonymity, the transfer principle, replication invariance, decomposability and 

translation invariance is: 

𝑓 𝐼 𝑐  =

 
 
 

 
 1

𝑡
  exp 𝛾 𝑥𝑖 − 𝜇 𝑥   − 1 

𝑡

𝑖=1

if 𝛾 ≠ 0

1

𝑡
 [𝑥𝑖 − 𝜇 𝑥 ]2

𝑡

𝑖=1

if 𝛾 = 0

;  

where 𝛾 a real number and 𝑓 ∶ ℝ → ℝ is a continuous and strictly increasing function, with 𝑓(0) =

0.  

The additive decomposability property along with 𝑓 0 = 0 and the functional restriction on 𝑓 

requires 𝑓 𝑥 = 𝛼𝑥 for any 𝛼 > 0. Thus, 

𝐼 𝑐 =

 
 
 

 
 𝛼

𝑡
  exp 𝛾 𝑥𝑖 − 𝜇 𝑥   − 1 

𝑡

𝑖=1

if 𝛾 ≠ 0

𝛼

𝑡
 [𝑥𝑖 − 𝜇 𝑥 ]2

𝑡

𝑖=1

if 𝛾 = 0

;  
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Next we need to check which of these measures satisfies the property of within-group mean 

independence. From our previous notation, recall that there are 𝑚 ≥ 2 mutually exclusive and 

collectively exhaustive subgroups. The deprivation score vector and the population size of any 

subgroup ℓ are denoted by 𝑥ℓ and 𝑛ℓ. 

Consider 𝛾 ≠ 0. The corresponding measures can be decomposed into within-group inequalities 

and between group inequality components as: 

𝐼 𝑥 =  
𝑡ℓ exp 𝛾𝜇 𝑥ℓ  

𝑡 exp 𝛾𝜇 𝑥  
𝐼(𝑥ℓ)

𝑚

ℓ=1

+ 𝐼(𝜇
𝑥

; 𝑡). 

The indices with 𝛾 ≠ 0 do not satisfy the property of within-group mean independence, which can 

be shown as follows. Suppose for any two deprivation score vectors 𝑥 and 𝓍,  𝑛ℓ = 𝓃ℓ and 

𝐼 𝑥ℓ = 𝐼(𝓍ℓ) for all ℓ = 1, …𝑚, but 𝜇 𝑥ℓ′
 ≠ 𝜇 𝓍ℓ′

  and 𝜇 𝑥ℓ = 𝜇 𝓍ℓ  for all ℓ ≠ ℓ′. 

Clearly, as for 𝛾 ≠ 0, 𝐼𝑊 𝑥 ≠ 𝐼𝑊(𝓍).  

Thus, the only class of inequality indices that satisfies all the requires property is 𝐼 𝑥 =

𝛼

𝑡
 [𝑥𝑖 − 𝜇 𝑥 ]2𝑡

𝑖=1 . 




