This work is licensed under a
Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Licence.
To view a copy of the licence please see:
http://creativecommons.Org/licenses/by-nc-nd/3.0/
(a) UNIVERSITY OF NAIROB (b/) Institute for Development Studies Working papers

ITNSTITUTE FON DEVELOPNTHT STUDIES
UIIVEZSITY OF NAIROBI

Workins Paper ${ }^{1} 0.62$

IABOUR III SMATI SCATE AGRICUIMUTE:
 ANT AITATYSIS OF THE 1970/71 FAFAI ETMURPRISE COST SURVEY LABOUR AITD WAGE DATA

By
G. D. Gwyer

September 1972
LIBARY
$1^{\text {ᄀ FEB } 2011}$
institute of
DEVEIOPMENT STUDIES

Any views expressed in tints naper are tinose of the author. They should促 not be interpreted as the University of hairobi.

RN 322329
IDS

095422
I.D.S. Working

Paper No. 62

IABOUR II SWALI SCALE AGRIOUIIURE:
AIT ANATISIS OR THE 1970/71 FARI ETMERPRTSE COST
SURVEY IABOU? AND FAGE DATA

By
G. D. Gwrer

ABSTRACI

The purpose of the paper is to present labour/land coefficients for small farms by enterprise computed from the Ninistry of Finance and Planning Farm Enterprise Cost Survey for 1970/71 and to demonstrate the usefulness of these coefficients in national, district, and farm planning. Three computer procrammes developed specifically for analysis of the FECS labour and wage data are described, the inplications of the findings in relation to the operation of agricultural labour markets are discussed, aggregate crop labour profiles for sixteen districts are presented, and suggestions for further work are made.

```
Introduction
Uses and Jimitations of Labour/Land Coefficients The Farm Enterprise Cost Survey
The Computer Programes
Labour Coefficients
Labour Naiket Indicators and Vam Nages
AgGregate Labour Profiles for Districts
Suggestions for lurther Work
Appendix A Coding Instructions and Input Pormat
Appendix \(B\) Ecological Zones
```


LIST OM TABIES

1. Labour Inputs for All Otwer İaize by District (1970/71)
2. Labour Inputs for Fybrid Lizize by District (1970/71)
3. Labour Inputs for Coffee by District (1970/71)
4. Labour Inputs for Pyrethrum and Cotton by District (1970/71)
5. Labour Inputs for Mature Tea by District (1970/71)
6. Labour Inputs for Improved Dairy Jattle by District (1970/71)
7. Labour Inputs for Unimproved Dairy Cattle by District (1970/71)
8. Labour Inputs for Farms of Leas Than Three Acres (1970/71)
9. Labour Inputs by Ecological Zone: Embu (1970/71)
10. Labour Inputs by Ecological Zone: South Nyanza (1970/71)
11. Labour Inputs by Ecolosical Zone: Nyeri (1970/71)
12. Labour Inputs by Ecological Zone: Nandi (1970/71)
13. Iabour Inputs by Ecological Zone: Busia (1970/71)
14. Labour Inputs by Ecological Zone: Murangh (1970/71)
15. Labour Inputs by Ecological Zone: Kisumu (1970/71)
16. Labour Inputs by Ecological Zone: Kirinyaga (1970/71)
17. Labour Inputs by Ecological Zone: Meru (1970/71)
18. Labour Inputs by Ecological Zone: Kiambu (1970/71)
19. Labour Inputs byr Ecological Zone: Kakamega (1970/71)
20. Labour Inputs by Ecologicel Zone: Siava (1970/71)
21. Labour Inputs by Crop Zone: Kisii (1970/71)
22. Labour Inputs per Acre recorded in Earlier Surveys
23. INeasures of Crop Diversity by District (1969/70)
24. Ageregate Crop Labour Proîiles for Districts
25. Averaçe Wages in Small Scale Agriculture b. Type of Imployment (1970/71)

Labour in Small Scale Agriculture:
An Analysis of the 1970/71 Farm Enterprise Cost
Surrey Labour and Wage Data ${ }^{1}$

Introduction

The purpose of this paper is to present labour/land coefficients for small farms by enterprise computed from the Ministry of Finance and Plaming Farm Enterprise Cost Suivey (FECS) for 1970/71, and to demonstrate the usefulness of these coefficients in national, district and farm planning. An additional objective is to place on record three computer programmes for calculating labour inputs and wages from the FECS.

In the first section we consider the uses and fimitations of labour/ land ratios and their derivatives with particular reference to the $\mathbb{P E C S}$ and the Kenya situation. Secondly, the FECS and the computer programmes are described. Thirdly, the findings are discussed. Lastly, suggestions are made for future work.

Uses and Limitations of Labour/Land Coefficients

Knowledge of the seasonal distribution of labour inputs by farm enterprise in small scale agriculture is useful at three levels. First, at the locational level, form planning ained at increasing the income and employment generating capacities of modal farm situations needs to take heed of seasonal labour requirements of farm enterprises. Second, at the divisional or district level, aggregate labour profiles based upon average labour/land coefficients are useful in identifying slack periods in the agricultural calendar when labour intensive projects like road construction, bush clearing, and disging trenches for the provision of water supplies, can best be undertaken. Third, at the national level, aggregate labour profiles for districts can give understanding of the magnitude and location of the unemployment problem. Apart from their role in directing Govemment's attention to areas in most need of employment creating projects, district labour profiles can be compared with a view to detemining either formally, using a linear programing transportation model, or informally, the needed direction of short term labour movements frow a trough in one district to a peak in another.

Recent efforts on the development front in Kenya suggest that labour data of the kind presented in this paper will be increasingly used at all three levels. With the renewed interest in farm planning (and especially linear prosraming) being shown by the Farm Ilanagement Division of the Ninistry of Agriculture, and by a number of individual researchers, there is a growing denend for farm level crop lebour profiles for different parts of the country and different ecological zones. At the same time a new emphasis on area based plamaing botio at the divisional level under the Special Pural Development
 about the present and within year allocation of labour between farm employment and non-fent activities. Host recently, the IIO Mrnployment Mission to Kenya has drawn cottentio: to apparent regional disparities in asricultural income and amployment and the neod to monitor the progress of policies aimed at overcoming these inequalities.

An additional use of labour/land coefficients as presented here is the light they shed on the operation of the labour markets in small scale agriculture. Not only do we find out which crops attract hired labour, at what times and in what quantities, but we also learn something about the characteristics of forms which do and do not hire labour, and differences between districts in their use of Pawily and hired labour.

There are two soints of difficulties or limitations of labour/land coeifiaients: the first is oonceptual, the second is practical. ${ }^{2}$ The conceptual limitation arises because actual work input is the product of two factors: woik intensity and the time spent in a given activity. Thus observed labour time spent in a given activity is an imperfect measure of actual work input. Work intensiti is likely to increase at seasonal peaks and drop off when there is less to do.

The practical linitations of labour input measurement arise from the cominon conflict in survey worli between coverage or sample size and accuracy. It is apparent that direct observation of labour time is itself a very labour intensive notivity, whicl! severely restricts the scope of an investigation. The usual solution is to place reliance upon the inenories of those involved in work input. In the FECS enumerators record labour inputs on the basis of monthly visits to furmers, which is probably stretching accuracy in the interests of coverage, although Colitinson fion his experience in Tanzania argues in favour of monthly visits. ${ }^{3}$ More frequent visits could be made with the same resources il the arount of information collected on other aspects of fom operations (moch of which is not being used in analysis) was reduced.

The Tarm Enterprise Cost Survey ${ }^{4}$

The Tam Enterpirise Cost Survey is now in'its fifth year (1972/3). Each year some 2000 farms are surveyed fron 1 st April to 31 st March by about 70 pemment enumerators covering about 30 farms each. The first year of operation (1968/9) ofly covered the long rains crop and although the results were processed they were not released. The 1969/70 survey data is still undergoing milidation. The monthly labour inputs recorded on the survey forms are presontly not being coded for analysis. Hence one contribution of this staid is that it brimgs to light data whicin are presently being collected but not analysed : another is that it has speeded up the presentation of some of the findings of the 1970/71 survey.

The information on labour use on small farms in the FTCS is given in standard mandays of eight hours. Thus if a man and a child work four days in a month for Pour hours eacin day on zaize then their combined labour input will be recorded as three mandays. The infomation on labour inputs is recorded on monthly visits to the former by enumerators and is then checked for intemal consistency by the district plaming office before being sent to Nairobi. The labour input on the farm is allocated among fifteen enterprises including three residual categories: all other crops, all other livestock and farm general. For some districts, particularly Kilifi and Kwale, the range of enterprises encountered differs markedly from the categories recorded, so that much iniomation goes into the residunl 'all other crops'. An improvement in the Survey would be to include additional enterprises explicitly; for example, beens, peas, sugar cane, cassava, potatoes, bananas, cashews, millet are important crops the labour inputs for which are not presently reoorded. Additionally blanis oolumns could be left for other specific crops.

The Computer Frogrammes

Three computer programes have been developed for the analysis of the labour and wage data of the MECS. These are S400 which carries out an analysis of labour inputs for crop enterprises; S40L which carries out analysis of labour inputs for livestock enterprises; and S4ON, which analyses the wage dota. All tiree programes are written in PORTRAN IV and are availaile fron the IDS data processing room. A connon feature of the crop and livestock labour prosrames is that they separate out farms which use family labour only for a particular enterprise (farms) from those which use hired labour only (H farms) and those that use both farnily and hired labour (FHF farms). Thus as may be seen from the specimen computer print outs shown on pages 6 and 7 labotr inputs ane siom pon encil of the se three categories as well as For all foms taken tofother.

S40C Labour Land Coefficients Progranme (Orops)
This prograrme carries out the following operations:
(i) performs a check on the data, rejecting cards where mandays per acre per year are less than 15 or greater than 450, or where a monthly labour input per acre exceeds 75 mandays. The programme also rejects cards which have fower than three monthly observations per year. Each of these limits may be adjusted if required by alteration of one of the procrmame cards. (ii) sorts farns into three categories on the basis of the type of labour input, and records the numbers falling into each category (OBSR); (iii) for each farm expresses labour inputs for a porticular enterprise in terms of mandays per acre per nonth (these can be printed out if required); (iv) for each enterprise and for tise three farm categories (FAMIIY LABOUR
 labour input per acre for the farms with that particular enterprise for each
month of the year, and for the yeor total. For wam usje botw hirod mo
 TAIMEI TAMIS IITRD);
(v) for each enterprise and for the three farm antegories calculates and prints out the average enterprise size (Hiss) and farm size (myid) in acres; (vi) for eaon row or montily labour inputs calculates the coefficient of variation (COV) thus giving a mecsure of seasonal variation in labour inputs.

S40I Iabour Animal Coefficients Programe (Iivestock)
This programe carries out the followins operations:
(i) performs a cheok on the data, rejectine cards where mandays per cow per year are less than 12 or greater tian 150 g or where a monthly labour input per cow exceeds 20 mardajs. The programe also rejects cards which have zero labour inputs for any month of the yoar. Each of these limits may be adjusted if required by alteration of one programe cord;
(ii) sorts farns into three aategories on the basis of the type of labour input ana records the numbers falling into each category (OBSR);
(iii) for each farm expresses labour inputs in teams of mandays per animal per month (these can be printed out ir required);
(iv) for the three farm cotegories calculates and prints out the average labour input per ainimal for each month of the year and for the year total;
(v) for the triree farm categories calculates and prints out the average herd size (SHOKK) the average fam size (MTMS) and the stocking rate (RATE) which is number of animals divided by area of farm in acres alloceted to the production of feed or pasture.
(vi) for ecoh row of monthly laboun inputs calculates the coefficient of variation (COV) thus giving a measure of seasonal variation in labour inputs.

S40:I Daily Wage Calculation Programe
This progranie carries out the following operations :
(i) performs a check on the data, rejecting data cards where in any month the daily ware exceeds shs. 7.00;
(ii) sorts forms into three categories: farms which hire casual labour only (CASUAJ) faras which hire regulor labour only (RMULAR) and farms which hire both casual and rezular labour (RUGULAN Aitl CASTAL): Regular labour is paid on a monthly basis; casual labour is paid by the day; (iii) computes for each form the average daily wage paid for each month, and caloulates the averaege woge for the three categories;
(iv) aocumlates for pach district the monthly totals of wages paid and days worked, and computes the weighted average daily wage paid to all labour for each month;
(v) antmintes the averige fam size (FAMiSiz) and nuber of fams falling into ench oategory (OBS).

The format for input for each of these programes is described in Appendix A. On the University of Nairobi ICI 1902A computer the mun time for the labour and wage analysis of the vhole FPCS is about two hours.

Print out of Programe \# S4ON

Tavour Cocfricionts

 by district; aid by acological zone yithin districts. The districtwanaysumbly cimed at obtainh av ge labour coefficieqts which coułd be combined with ac information on crop areas fron the Statistical Abstract to derive aggregate crop labour profiles. The ecologicol zone analysis aimed at obtaining coefficients of labour inputs for certain enterprises which would be of use for form planining. Tables 1 to 5 present information on labour inputs for crops by district, Tables 6 and 7 give informetion on labour inputs for innroved and unimproved dainy cattle by district, and Tables 9 through 20 labour inputs for crops by ecological zones within districts. One of the objectives of the exercise is to gcin understanding of the operation of labour markets in different parts of the country, and to this end each rable shows the nwiber of farns hirine labour for a particular enterprise, the proportion of hired lajour used on those fams hiring labour ($\mathrm{H}+\mathrm{H}$ farms), and a corbination of these indices livbelied Hired Labour Intensity.

The Hired Iabour Intensity index is an attempt to measure the importance of hired labour in the production of a crop in a particular district. It is obtained as the product of

It is not possible to present monthly labour inputs in the Tables, but the reader who requires these for farm planning purposes may consult the original computer print outs which are now with the Statistics Division of the Ministry of Pinance and Plonning.
(a) IVaize

Labour inputs for maize shov wide variability between districts, the range being from 24 inandays per acre in Kericho to 145 mandays for Kisii. The minge is narrower for hyrid maize: from 27 mandays in Kericho to 98 mandays in Kisii. There are three explanctions for this variability among districts:
(i) clinatic diffcrence betweon districts determine whether one or two maize crops can be grown per year. In nost of Bungoma for example the distribution of rainfoll is suci thet only one crop can be produced per year, In most of Kisii two crops are the norm. Within districts altitude, tomperature and soil characteristics aifect oropping frequency.
(ii) districts vary in the extent to which maize crops are interplanted with other, usually food, crops. Table 22 indicates that interplanted maize tends, to have a higher labour input per acre than maze grown in pure stand.
(iii) the use of tractors or oxen for cultivation is more comon in some districts than others. Mecionised cultivation tends to occur where farm sizes are larger and the land is flat. It is worthy of note therefore that districts with the highest labour inputs for maize are Meru, Taita, Embu, and Kisii where farm sizes are small and the topography is hilly.

The three reasons given above for the wide disparity of labour inputs for maize among districts are also important in understanding why annual labour inputs for hybrid maize are for many districts less then those for all other maize. Husbandry recomendations for hybrid maize call for more careful seed-bed prepciretion, weeding three times instead of once, and application of insecticides and fertilizer: all of which should tend to increase the labour requirement. The extra labour input for hybrid maize is unlikely to show up in comparison of annual labour inputs if as is usually the case, hybrid maize is grown bu't once a year and other maize is grown twice. Looizing at labour inputs in the peak month (usually April) however we find that for Kirinyaga, Kakomesn, Hyeri, Nyandarua, Murangh, Nandi and Kericho the labour input for hybrid maize exceeds that of all other maize. We must also take into account the likelihood that farms growing hybrid maize are those using some form of mechanized cultivation, and that hybrid maize is less likely to be interplanted with other crops than all other maize. For hybrid maize it is interesting to note that for all districts scve one $\mathrm{F}+\mathrm{H}$ farms have higher labour inputs thon do farms. Two possible explanations come to mind. The first is that $\mathrm{F}+\mathrm{H}$ faras having the cash to hire labour also have the cash to purchase and apply material inputs which increase the demond for labour. An alternative explanation is that farms have no money to hire labour, and their own labour is insufficient to meet peak labour deriends.
(b) cash crops

Por the cash crops tea, coffee, pyrethrum and cotton a greater proportion of total labour input is taken up with harvesting the crop than with food crops like maize, although this tendency is much more apparent with a perennial crop like tea thon an annual cash crop like cotton. Continuously harvested crops like pyrethrum and tec tend to have a more even requirement for labour through the year which shows up in fower coefficients of variation in monthly labour inputs. Mature tea appears as the most labour intensive crop with anual inputs in excess of 200 mandays followed by coffee, With cotton and pyrethrum having liabour inputs generally in excess of 100 mariays. Inter-district variability in labour inputs for these crops likely reflects yield dirferences, which may also vary from year to year with weather conditions. Coffee for axample tends to exhibit a biannual bearing cycle, and cotton yields aro rery susceptible to the timins of the mins.
of present levels of le? hour inguts with tiose recorded in earlier surveys (Hable 22). The tendency is particularly marked in areas where there is a fair der, of cesh crop diversificationoe.g. Kinnbu, Kisii.

Interesting contrasts betweon the employment gelerating effects of tea and cotton may be observed. Tea is a very labour intensive crop in all districts where it is grown, but cotton's labour intensiveness is about half that of tea and varies from district to district. Tea is a high income crop yielding the average formers some shs 1500 a year per acre. Cotton growers are lucky if they get a gross retum of shs 500 per acre. The income from tea comes at regular intervals through the year as the crop is harvested. Cotton pasments are made once a year. The labour requirement from tea is ioinly constant through the year: cotton's requirements peak markedy at weeding and harvesting tines. With these considerations in mind it is not surprising that tine hired labour intensity of tea is generally much higher than that of cotton. In Nandi, for example, we find three farms with an average of 1.7 acres of tea in a sample of 13 tea shambas relying exclusively on hired labour. Labour inputs of 294 mandays per acre per year means that two fulltime workers can be employed on each farm just to look ofter the tea. In Siaya, by contrast, only 10 out of 27 cotion farms employ any hirea labour, and hired labour input is only sir per cent of an anual labour inout of 141 mandays on these farms.
(c) dairy livestocic

The labour data for livestock can be anolysed in two ways : either using the labour land programe winich gives labour inputs per unit of land allocated to pasture and the production of feed for livestock, or by using the labour livestock programe whicin gives labour coefficinets in terms of mandays per animal. Because feed produced on the farm may be less or greater than that fed to a farmer's animals it is much more satisfactory to analyse labour coefficients in terms of mandays per aninal.

There appear to be two major determinants of how much labour time is spent in looking after dairy aninals: the amount of milk they produce which in small scole agriculture is more likely to be obtained by hand rother than machine, and whether the animals are fenced, herded or stall fed. Generally one would expect inproved livestocir to be fenced motier than herded, and to proauce more milk thon unimproved stock. Thus one cannot reason a priori that unimproved livestock wili have lower labour requirements then improved livestock. In fact the labour coeflicients are in sone districts higher for uninproved livestock, Generolly lobour inputs for both inproved and unimproved fall within a narrow rnice, between 40 and 60 mandars per year, sugeesting that a herd of 5 or 6 animals would provide full time cmployment for one man. Anothor oominon feature o: the labour data for livestock is the low variation in lebour requirenents throug tre year. The coefficient of variation in montinly labour inputs is $\hat{\text { in }}$ nost districts less thnn ten.

While labour inputs for catile show a fair degree of uniformity enonf districts, herd size and stock rates do not. Variation in measured stocking rates probably reflects, in addition to differences in grassland productivity, variation in the use of purchased feedstuffs and access to common grazing land. Herd sizes for improved livestock are typically less then those for unimproved livestock. Relatively few forus hire labour to look after unimproved livestock, tinis being in many districts the traditional task of children, but where lebour is hired it often accounts for a high proportion of total labour, indicating a high degree of job specificity. Hired labour intensity tends to be greater for improved livestock.

Labour Market Indicators and Farm Wages

We have noted in previous sections wide variability among districts ond crops in use of hired labour, and also that certain cropsn like tea, and certain districts, like Kismbu, have higher propensities to hire labour than others. The contribution of hired labour to total labour input on $\mathrm{F}+\mathrm{H}$ farms is typically in the range 20 to 45 . In nearly all cases farms which hire labour are on averace larger than faris which do not The variation in hired of family labour inputs, which indicates that small scale farms seldon provide around the year employment for hired workers. Most jobs in small scale agriculture are for casual workers paid on a daily basis.

Interesting contrasts between labour market situations are provided by Kisii and Kiambu, which have si:ilar demographic and agricultural characteristics. Both are densely and evenly populated, and both grow a range of high value oash crops like tea, coffee, pyrethrum, pineapples and passion fruit, as well as hybrid maize. However both the use of hired labour and the level of labour inputs for given crops differ markedly. Thus

	Kisii	Kiambu
Hired Labour Intensity		
All Other Iaize	2	13
Hybrid Maize	3	9
Coffee	6	21
Pyrethrum	4	$12 *$
liature Tea	15	29
Inbour Inputs/Acre (All farms)		
All Other Maize	145	98
Hybrid	98	35
Cofree	256	105
Pyrethrua	177	55
Iinature Tea	217	198

(i) the size distribution $0:$ land holdings cocording to tine ututisticai Abstract for 1970 is more unequal in Kiambu than in aisii. Hence there are more farmers who are foming larger holdings thin their tamive wour gan monge in Kiambu, and at the same time there are famers whose holdins is too small to give then full time emplowent. In Kisii by contrast there are many smoll holdings, but relatively few so large that the lobour requirements camot be met from iamily labour.
(ii) incomes of form owners tend to be higher in Kicmbu than in Kisii, because of the proximity to Iloirobi and the opportunities for earning non-farm income. . Because of a (postulated) hish income elasticity of demand for hired labour, increased incomes tend to lead to the suistitution of hired labour for family labour in farm activities.

There are two considerations which help to explain why labour inputs for given crops are lower in Kiembu than in Kisii.
(i) Although both areas are densely populated the effective supply of labour to small scale agriculture is less in Kicubu than in Kisii because of the higher opportuaity costs of labour in Kinmbu winch in turn is a consequence of employment opportunities on estates and in non-fam urban activities. The higher supply price of lanour in Kiambu does not show up in the wage data for 1970/71, possibly because of too sinll co scmple size (see Table 25).
(ii) because of the higher sipply price of labour, and possibly because of proximity to service facilities in $N_{a i r o b i}$ and a flatter topography, the extent of mechanization is greater in Kianbu than in Kisii.

Other district labour mariset situations are less easy to typify, but broadly one can differentiate districts where denond for agricultural labour is low because of low farm productivity and litile crop diversification (e.g. Siaya), and yet where observed labour inputs are mocierately high because labour has low opportinity costs, from districts which approximate the Kisii pattem just described. Nandi and Kericho tand to fall outside this grouping because of large fam sizes and the greater inportance of livestock husbandry in their faming systems, as do areas where low and erratic rainfall affects labour demand within the area and labour suppler to adjacent higher minfall areas.

The levcl of wages paid in small scale agriculture (Table 25) seems to vary with the extent of cash crop developnent. Thus districts which Table 23 shows to have a high degree of crop diversity (Kiambu, Iyeri, Kisii) pay higher average wages than districts with a low degree of crop diversity (Nandi, Kisumu, Siaya, Eusia). In most districts the casual wage exceeds the regular daily wase, indicatilu the different opportunity costs for landless regular workers and part time family casual workers (on the supply side) as well as the difficulties of keeping a man fully employed through the month on a small shounba.

In seeking to establisin the inportance of demand vs. supply shifts in the determination of agricultural wases, correlation coefficients between average monthly wages and days woiked per month were calculated for each district. Foi Nondi, Siaya, Meru, Kiambu and Nyeri the correlation coefficients showed the expected positive signs, indicating tint denand shifts associated with the seasonal requirenents of agriculture were having a dominant effect on the mariset. Howeve: in no case were wages in the peak month very much higher than those in other montis, which would have indicated situations of acute labour shortages at these tines.

For Muranga, Embu, Kirinjaga, Machalros and Kisumu the correlation coefficients between days worked per month and the average wage paid were either close to zero or negative. A possible explanation for this findingr is as follovis. An inportant shifter of labour supply through the year is the stock of food in a small Parmer's store. If the stock of food dwindles to zero before harvest tine, people cone into the labour force looking for work. In carrying out investigations into the labour market in Mbere in 1971 we were stmuck by the number of people from lower Machakos looking for worls at weeding tine, because they had experienced a poor crop year and were short of food. 5 On the other side of invere in liwea the saying is that the number of people who come to work at the rice scheme depends very much on the size of the maize harvest in neishbouriig Kirinyaga. Given thet food supplies are an important determinant of leboun supply, it is interesting to note that four of the districts which have low or negative correlation coefficients border on the drier areas of Dastern Province where seasonal migration of labour on account of food shortages is most likely to take place.

Aggreqate Iabour Profiles for Districts

Table 24 gives the aggregate crop labour profiles for 16 districts. The figures for monthly labour inputs were calculated by applying to the crop areas for each district (iron the Statistical Abstract 1971) the labour/ lond coefficients for the district corputed from the FECS for 1970/71. Labour allocated to livestock enterprises is not included, but since labour use is fairly constant through the year tile omission does not have sucin affect on the overall shape of the labour profile. The exclusion of these enterprises may influence the magnitude of the coefficients of variation but probably does not affect their ordering.

It is interestiñ to note by comparing Tables 23 and 24 that it is districts having a high cegree of crop diversity which also have a fairly flat labour profile through the year, while Siaya, for example, with a low degree of diversity has a labour profile waich shows marked variation in lavour inptat through the year. This finding is readily explainable by whet we know of the laiour profiles of individual crops. Naize, and hybrid maize particularly, are crops with marked labour pealss at land preparation and weeding time. lifost aash crops, especially tea, pyrethmm, and livestock enterprises,
acie basis. Districts which nove a low degree or crop diversiou have lañuis profiles dominated by maize, and hence hove marked seasonality in labour requirements through tine year. Distructs witin a higin degree of crop diversity have more crops with flatter labour profiles, and hence an even requirement for labour through the vear.

Surgestions for Further Work

We have indicated earlier in this paper the need for wars of monitoring progress in increasins employment opoortuities in small scale agriculture. The application of tie programes developed and described in this paper to the labour data irom successive pecs would meet this need and over a period of years provide an interesting picture of progress in increasing the labour absorptive capacity of farming.

Proposals are currently beine discussed between Ministries for chonging the somple finne of the HEC to irprove the usefulness of the data for farming planing. Whetiner the ecological zones or farming systems approach is used the programes meet tie requirement of fom planners for colculating now tiv lobous entorprise requirements.

If the PECS is to be restructured, consideration needs to be given to ways in which the quality of the labour data cem be improved. The point has been made ecrlier that improved accuracy would likely result if farms were visited more frequently thon monthy, and that this accuracy could be obtained at no additional costs if some of the information now being callected, without apparont analytical value were scropped. Other needs are :
(i) to increase tie number of enterprise categories for winch labour data is recorded. As it is too much innomation is lost in the residual categories 'all other crops', 'all other livestock', and 'farm general'. This is especially true for the Coast districts and the drier areas where few of the presently speciilied enterprises apply.
(ii) to distinguish labour inputs as between long and short rains crops Which occasionslly overlap when, for example, the long rains crop is being threshed and land for the sinort rains crop is being prepared.
(iii) to adopt a consistent procedure for the treatment of crop mixtures, so that for exomple labour inputs for maize and beans may be distincuished from those for maize in pure stand.
(iv) in the analysis and coding of data to be careful to apply the correct acreage figures to labour data in situations where the crop year does not coincide with the April-ifisron year of the survey e.g. cotton. This may require a similar procedure to that described for lone and short rains maize.
(v) To record labour inputs by enterprise by sex, ond to record children's inputs explicitly. One or the information gaps revealed by the ILO Employment Mission to Kenya was lack of kowledge of how much time women spend in farm as well as househcld activities. It has orten been asserted on the basis of casual observation that (a) women are overemployed and men underemployed on
the family sumba and (b) that men look after cosin crons while women's concem is with food crops. Statistical evidence from different parts of the country on these two points would help inprove understanding of the nature of the umemployment problem, as well as providing information important to farm planning.
(vi) to concentrate increased on the ground supervision initially in districts where labour inputs seen to be out of line with those recorded elsewhere for no apparent jeason (e.g. Soutll Myanza), and for all districts to request enumerators to be more careful in their collection of wage informam tion. There are many forms where hired labour inputs are recorded but no iniomation is giver aboot woges

Further development of the analysis of the labour deta from the FECS requires more explicit consideration of the factors which determine the level or labour use within small scale agriculture. Put another way, the present study has shown that there is large variation in the levels of labour use for particular crops among districts. Some of the within district variation is elinjnated when farms are stratified by ecological zone, but between farm variation in labour inputs is still high. Λ partial reduction of this variation is probably achieved by sejarating out farms which hire labour from those that do not, but we do not know whether this is because farms which hire labour are bigger farms or farms which apply greater amounts of inputs which are complementary to labour.

Two approaches are considered worthy of exploration:
(i) to add to the present $S 40 C$ programe a sub-routine for computing the variance of labour inputs, and then to stratify the district ecological zone sample by enterprise size and farm size ranges to test for significant differences between sample means ise. to look for reductions in variance which may be attributed to the stratificction. The same procedure could be applied to the

(ii) to add to the present coded information data from the FECS on levels of use of material inputs like fertilizer and insecticides, and the use of farm machinery. The concern would then be to estimate a labour demand function of the following implicit form :
$I_{D}=f(\mathbb{M}, T, E S, E S, H, O C)$
where I_{D} is amnual labour demand per acre for a particular orop,
Mis vilue of moterial inputs applied with an expected positive sign,
T is a zero one variable, 0 for hand labour, 1 for use of tractor, with an expected negative sign,
FS and ES are form size and enterprise size in acres to test for scale ofíects with expected negative signs,
H is another zerome variable: 0 for \mathbb{F} farms, 1 for $F+H$ farms, with an expected positive sign, assuming that $\mathrm{T}+\mathrm{H}$ farms are less faced witil creäit constraints than F farms and hence are not subject to libour input mationing at peak times,
$O C$ is on index of the importance of other crops on the farm derived from their labour intensiveness and area. This variable would
have an expected negative sign as a proxy for the implicit price or opportuniter cost of labour.
The explicit functional form Ior estimationel purposes would depend upon assumptions about the production function appropriate to small scale agriculture.

FOOTNOTES

1. I am grateful to officials of the Ministry of Finance and Planing for access to the 1970/71 Farm Enterprise Cost Survey labour and wage data, and to the IIO/UNDP Employment Mission to Kenya for funds for coding the data. Wy thanks are also due to Ridley Nelson for help in sorting out the ecological zones. An earlier version of this paper was presented at the East Africon Agricultural Econorics Society Conference held at Makerere University in June 1972.
2. Some of the limitations inentioned here are discussed more fully by J.H. Cleave in Chapter V of "Labour in the Development of African Agriculture: The Evidence of Form Surveys, "unpublished Ph.D. thesis, Stanford University, 1970.
3. Collinson M.P., "Parm Bomomics in Airicon Peasant Agriculture: An Approacli to Investigation and Planins with Reference to Experience in Tanzania, " unpublished Ph. D. thesis, Reading University, 1971.
4. For a fuller account of the objectives and methods of the Farm Enterprise Cost Survey, see "Agricultural Surveys in Kenya: Some Methodological Problems;" by I.K. Wutuku, East Airican Agricultural Economics Society Conference, Dar es Salam, 1970, and "Form Management Surveys Carried Out by the Central Bureau of Statistics," by J. Exeter, paper presented a.t the Seminar on Problems of Tam Management Surveys and their Possible Solutions, Department of Asricultural Economics, University of Nairobi, 1972.
5. Mbithi and Wisner write Miigration is another significont dimension of the drought proilem. It was found that short term migration to the nearest upland area in search of wage employment was very comon in the marginal zones of Merv, Imbu and Kitui..... These wage migrants are usunlly paid in kind and coniy food back to their families at intervals." "Drought and Famine in Kenya, Niagnitude and Attempted Solutions," by P.M. Mbithi and B. Wisner, IDS Jiscussion Paper Mo. 144, p.25, July 1972.

APPETDIX B

Ecological Zones

The data for labour inputs presented in Pables 9 to 20 is based upon ecological zone groupincs within ecch district. Because the original selection of farms in the district sample was not based upon an ecological zone stratification, a comon situation was that a large number of farms fell witinin one ecological zone, but there were too few farms from other ecological zones to neet the minimum requirement for inclusion within a Table of a sample size of ten. Olearly if the main purpose of the Famm Interprise Cost Survey is to provide data for representative farm planning, then the systen of form selection must take explicit heed of zones, be they based on ecology or laming systems.

Tine ecologicol zones used to stratify the forms for each district in the present investication are those worked out by Fidley Felson of the Faim Monagenent Divisici of the Ministry of Agriculture based upon the Lealie Brown ecological zone classification using dominant grass species for districts east of tile rift and the more recent vegetation map for districts west of the rift. Melson has distinguished the following zones:

Zone	Descriptioa	Districts with Farms falling in this zone froil the 1970/71 Survey.*
1	Intermediate seminever evergreen thicket	Kisurnu, Siaya, South Nyanza, Busia
3	Kano type impeded draincge cuad open grassland on clay pans	Kisuma, south Iyyanza
4	Oombreturn and allied wood leafed savanneh	Kisumu, South ilyanza, Kakarega, Busia Burigoin
5	Noist montano ond intermediate forests	Kisii, Kericho, Nandi
6	Liontone Accacia	Nisii, Mendi
7	Impeded drainage clun crossland on vlei soils	South Hyanza
9	Hower most montanc and intermediate Porests	Siaya, Kokamega, Busia
21	High Bracken	Nyeri, Imuranga, Embu, Meru
22	Kiluyy Grass	Nyeri, Muranda, Kirinyaga, Kiambu, Embu, ILeru
23	Star Grass	Mifurenga, Kirinyaga, Kiambu, Embu, Meru
24	Grass woodland and savannaln	Nyeri, Muranga, Kirinyage, Embu, Meru
*Although a district hos Parms in the sample counce from a particular ecological zone there may have been too few observations to warrant thist ecological zone's appearance in the district Table.		

Coding for Card II Mage Card

1-12	The some as for Cord 1
13	Blank
14,15,1	Total wage bill for the month of April (frour Pom 6 colum 20)
17,18,19	Total wage bill for the month of hay (from Form 6 col. 20)
20,21,22	Total wage bill for the month of June (from Fomm 6 col. 20)
23,24,25	Total wage bill for the month of July (from Form 6 col. 20)
26,27,28	Total wase bill for the month of August (from Form 6 col . 20)
29,30,31	Total wage bill for the month of September (from Torm 6 col .20)
32,33,34	Total wage bill for the month of October (from Form 6 col. 20)
35,36,37	Total wage bill for the nonth of Movember (from Fomm 6 col. 20)
38,39,40	Total wage bill for the month of Deceuber (from form 6 col. 20)
41,42,43	Total wage bill for the month of January (from Form 6 col. 20)
44,45,46	Total wage bill for the nonth of February (from Form 6 col. 20)
47,48,49	Total wace bill for the zonth of Marcin (from Form 6 col. 20) Round all wage data into whole shillings
50,51	Total hised labour deys in the month of April (from Fom 8, col. 16)
52,53	Total hired labour days in tine month of May (from Form 8, col. 16)
54,55	Total hired labour deys in the month of June (from Form 8, col. 16)
56,57	Total hired labour days in the month of July (from Torm 8, col. 16)
53,59	Total hirec labour days in the month of August (from Form 8, col. 16)
60,61	Total hired labour days in the montin of September (from Form 8, col. 16)
62,63	Total hired labour days in the montin of October (from Form 8, col. 16)
64,65	Total hired labour days in the month of November (from Form 8, col. 16)
66,67	Total hired labour days in the nonth of December (from Form 8, col. 16)
68,69	Total hired labour days in the month of Januaiy (from Form 8, col. 16)
70,71	Total hired labour daus in the nonth of Februnry (from Form 8, col. 16)
72,73	Total hired labour days in the nonth of ITarch (from Form 8, col. 16)
74	Blank
$75 \quad 1$	If regular labour only employed (see sheet 6)
2	If cosual labour only employed (see sheet 6)
3	If cosual and regular labour employed (see sheet 6)
76-79	Blank
$80 \quad 2$	For Card II

Dunny cards for the Jabour Inputs progrobine, to be put at the end of each enterprise set oi cards are:

to introduce all title coids except the first of a run.
Durny cards for the Wages Programe to be put at the end of each
district set of cards are:

9700	in	colurns	9,10,11,12	for Kwale
9710	-	-. S. ityonza
9720	-	-•	.	. Kericho
9730	-•	-•	.	. Dungoma
9740	- 0	-•	-	. - Busia
9750	.	-	-•	. . Kilifi
9800	.	-•	-	. . Kisii
9810	.	-•	-	- Rubu

APPWDIX A

Coding Instructions for irontily jabour inputs and Wages.

(a) The first step is to check that there are labour inputs on forms 7 and 8 for the enterprises showi on form 5 and numbers of livestock shown on Closing Valuation Form 1A and B. If there are no labour inputs for a crop which is shown on fom 5, or conversely if there are labour inputs for a crop not shown on fom 5, this can be ignored. The same applies to livestock.
(b) There will be as many card I's as there are enterprises for which labour inputs are shown, given the point made in paragraph one. Thus if a farm has labour inputs for improved dairy cattle, tea, maize and coffee, there will be four card I's to complete. In all cases however there will be only one caird 2 to complete per fam.
(c) All numbers to be right justified

Coding for Card I Labour Inputs
Colum
1,2 Blank

3 Code the following letter depending on the District.

IV	Inyozi	K	Takamega
G	Kisii	S	Kisumu
!	Kilini	B	Kirinyaga
3	Enbut	A	Kiounbu
T	Taita	P	Busie
D	Nandi	R	Kericho
M	Memz	U	Myandarua
II	Hacholios	Z	Nyonza
Y	Siaya	W	Kwale
T	Muranga	J	Bungoinci

" I am grateful to Julion Exeter for setting out the coding instructions in this form.

In the case of Iivestock Interprise

(c) Forns will have up to two livestock enterprises,
(i) inproved/uinimproved livestock and
(ii) other livestock. In each case code the total of fodder crops, planted crops and permanent grass. If there is a difference in area between the long and short rains, take the mean.
17 Blonk

From Form 7
18,19 The April fonily labour input for the particular crop
20,21 The May family labour input for the particular crop
22,23 The June forily lobour input for the particular crop
24,25 The July fanily labour input for the particuiar crop
26,27 The August farily labour input for the particular crop
28,29 The September fonily lobour input for the particular crop
30,31 The October fomily labour input for the particular crop
32,33 The November Iamily labour input for the particular crop
34,35 The December fanily labour input for the particular crop
36,37 The January fonily labour input for the particular crop
38,39 The February fanily labour input for the particular crop
40,41 The March family labour input for the particular crop
If there are no data in ony or all of the montis, leave blank
42,43,44 Blank
Trom Fom 8
45,46 The April hired lobour input for the particular crop
47,40 The liay hired labour input for the particular crop
49,50 The June Sired labour input for the particular crop
51,52 The July hired labour input for the particular crop
53,54 The August hired labour input for the particular crop
55,56 The September hired labour input for the particular crop
57,58 The October hired labour input for the particular crop
59,60 The November hired lobour input for the particular crop
61,62 The December hired lobour input for the particular crop
63,64 The January hired labour input for the particular crop
65,66 The Tebruary hired labour input for the particular crop
67,68 The March hired labour input for the particular crop
If there are no data in any or all of the inonths, leave blank.
69,70,71,72 Blank
For all Enterprises:
73,74 The Crop code fron Fom 7 or $8 \mathrm{e} . \mathrm{g}$.
inproved dairy cattle 1 ,
wheat 4, cotton 12
If the Enterprise is eiticer inproved or unimproved livestock then either:
75,76 Fron the Closing Veluation form 1A (Improved Livestock), the combined total nuber of beef and dairy cottle
77 Blanls
78,79 Fron the Closing Veluation form 1B (unimproved Livestock), the total number of catile fron section 1 .

Code 1 for cora 1
Repeat tinis procedure for the next, and all subsequent enterprises.

(iv)

9830	in	coluxns	9,10,11,12	for	Nandi
9840	Meru
9850	-	Miachakos
9860		Şiaya
9870	-	..	.	-	Iruranga
9880	..	\because	.	.	Kakamega
9890		Kisumu
9900	.	-.	.		Kirinyaga
9910	.	.	.	-	Kiambu
9920	.	-	-	-	Ifyeri
9990	.	\bullet	-		last card

The order in which the data cards for the crop and livestock progromes are presented to the computer should be as follows:

- Title Card e.g. IHyeri
- card with 91 punched in colums 73,74
- second Title card e.g. High Bracken Zone
- labour data cards for particular enterprise i.e. those having comon entries in colums 73,74
- durany card for the particular enterprise e.g. 33 in colums 73,74 for hybrid maize
- labour data cards for next enterprise
- dumpy card for the particular entermrise et. seq. until all entorprises for ecological zone conpleted
- card witk 91 puncied in columns 73,74 (to introduce next Title Card) Title Card e.g. Kiruyu Gross Zone
- labour deta cards for particular enterprise
- dummy card for particular enterprise et. seq. until all ecological zones for district completed
- card with 91 punched in colums 73,74
- Title Card e.g. Kisumu
- cord witin 91 in columns 73,74
- Title card e.g. Intermediate Semi Evergreen Thicket
- labour data cards for first enterprise et. seq. until cords for all districts read
- card with 90 in columns 73,74 to stop the programe.

The order in which the date cards for the wases programe are presented to the computer should be as Vollows:

- Title Carà e.g. Vage amalysis
- data cards for partioular district
- dumy card to bring in next district e.g. 9800 in colums 9,10,11,12 for Kisii
- data ceràs Ior Kisii
- dumay card for next district et. seq. until all districts included.
- 9990 in colums $9,10,11,12$ to stop the programe.

Table 23. Measures of Crop Diversity bjr District, 1969/70

WN N \rightarrow ○ N
$a \infty \quad \stackrel{N}{\circ}$
\Leftrightarrow

Mु $\vec{\circ} \vec{\omega} \stackrel{\rightharpoonup}{\sim}$
$\vec{\circ} \vec{\infty} \underset{\sim}{\bullet} \quad \vec{N} \xrightarrow{\sim}$

$\overrightarrow{\mathrm{O}} \overrightarrow{\mathrm{J}}$ • $\quad \overrightarrow{\mathrm{O}}$ ज $\%$
$\vec{\sim}$ N N ※ N N N

NNN
$\overrightarrow{6} \vec{N} \ddagger$ N恐
$9 \stackrel{\rightharpoonup}{\mathrm{G}}$
9
8 品
$\frac{\text { Annual Labour }}{\text {（meaday s／acre）}}$

C．V．of Nonthly
Ia bour In puts
Mable 20．Labour
Annual Labour
（me aday s／acre）

$\stackrel{\rightharpoonup}{\circ} \vec{i} \quad \stackrel{\circ}{\infty} \quad \stackrel{\circ}{\infty}$

$\vec{i} \vec{i}{\underset{\infty}{N}}_{N}^{i} \dot{i} \dot{i} \vec{j}$
$\stackrel{\rightharpoonup}{0}$
0
$\stackrel{\rightharpoonup}{3}$
$\stackrel{\rightharpoonup}{-}$
$\stackrel{\circ}{\dot{\circ}} \overrightarrow{\dot{\omega}} \overrightarrow{\mathrm{b}}$ 岦

$\stackrel{\rightharpoonup}{\circ} \stackrel{\rightharpoonup}{\dot{\circ}} \dot{\sigma}$ 回

$\vec{\omega} \bullet \checkmark \quad ज \vec{心} \vec{\omega}$
a $\vec{\sigma} \quad v=$

$N \vec{N} \quad N$
๑ い

※ $\stackrel{N}{\sim}$ か
v̧ w̛o ${ }_{0}^{w} \xrightarrow{w}$
IN N N N N
gif w w
ज $\stackrel{\rightharpoonup}{\infty}$ N
जु 心े $\stackrel{\rightharpoonup}{\mathrm{u}} \stackrel{\rightharpoonup}{\mathrm{O}}$

$\stackrel{-0}{0}$
$\stackrel{\rightharpoonup}{5}$
$\stackrel{\rightharpoonup}{0}$
$\stackrel{\rightharpoonup}{0}$
$\infty \quad N \quad$ NWN N N

$\cos 0 \mathrm{~N}$
$\vec{\sim}$
$\vec{\omega} \stackrel{H}{f} \stackrel{B}{\square}$
ゴ
नु $\stackrel{\rightharpoonup}{\circ} \stackrel{\infty}{\rightarrow}$
4
$\vec{N} \underset{\sim}{\infty}$ N
市 $\underset{\sim}{N} \underset{\sim}{\sim} \underset{\sim}{N}$
$\vec{\sigma} \quad$ जु $\stackrel{\circ}{\circ} \stackrel{\rightharpoonup}{\mathbf{u}}$
崮

$\vec{N} \quad \stackrel{N}{\sim} \ddagger \pm \stackrel{0}{G}$
些
巴able 18．Icbour Incuts by Ecological Zone ：Kiambu（1970， 71 ）
$\stackrel{N}{i}$
$\stackrel{\sim}{i}$
$\dot{\sim}$
$\begin{array}{lll}N & \rightarrow & M \\ i & 0 \\ 0\end{array}$
$\vec{\sigma} \vec{H} \quad \stackrel{N}{0} \stackrel{\rightharpoonup}{\circ}$

$\begin{array}{ccc}0 & \vec{n} & \overrightarrow{0} \\ i & i & i \\ i & i\end{array}$
$\begin{array}{lll}\omega & \stackrel{\rightharpoonup}{\circ} & \stackrel{\rightharpoonup}{*} \\ 0 & \infty & \dot{\sim}\end{array}$
$\stackrel{\rightharpoonup}{+}$
－
∞
i

n	N			
	$\stackrel{\rightharpoonup}{n}$	$\stackrel{\rightharpoonup}{i}$	$\stackrel{\rightharpoonup}{0}$	0
i				

분

届
（LL／OL6！）ทアашвyセy
in

$\begin{array}{llllll}0 & 0 & \infty & 0 & n & 0 \\ o & 0 & 0 & \text { in } & \infty & \text { is }\end{array}$

W N W O N
$\xrightarrow{\sim}$
$w_{i} \xlongequal{\sim}$
W N

$\vec{\omega}$	M	$\vec{\omega}$
$\vec{\rightharpoonup}$	$\underset{ज}{c}$	\vec{N}

ज ज
$\stackrel{\rightharpoonup}{\sigma} \quad \stackrel{\rightharpoonup}{\mathrm{O}}$
$\circledast \vec{N}$ K

1 学 の

$\stackrel{\rightharpoonup}{i} \quad \stackrel{\rightharpoonup}{\circ}$
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{i} \stackrel{0}{i}$
$\underset{\sim}{v} \underset{i}{N}$
1 $\quad i \quad \stackrel{\rightharpoonup}{t}$
$\begin{array}{llll}\infty & \pi & 0 & 0 \\ \dot{u} & 0 & 0 & \text { io }\end{array}$
$\underset{\sim}{v} \quad \underset{\sim}{u} \quad \stackrel{w}{v}$

앙 2

Table 12. Labour Inputs by Ecological Zone : Nandi (1970/71)

の出ココ
$\sigma \vec{v} \stackrel{\rightharpoonup}{0}+$
$\vec{N} \xrightarrow[\sim]{\hookrightarrow} \stackrel{\rightharpoonup}{\lrcorner}$

苍
$\stackrel{\rightharpoonup}{\circ} \underset{\sim}{\sim}$
$\vec{\circ} \vec{\circ}$ 绐
NN：w
$\stackrel{\rightharpoonup}{0}$
N N N゚囚
$\therefore \dot{\circ} \stackrel{\circ}{\circ}$
$\stackrel{\rightharpoonup}{\circ} \stackrel{\rightharpoonup}{i} \stackrel{\circ}{i}$
${ }_{\infty}^{\circ} \stackrel{\circ}{\circ} \stackrel{\rightharpoonup}{G} \stackrel{\circ}{\infty}$

$\cos _{0}^{0} 0 \stackrel{w}{i}$
$N \pm N+$

w w
$\stackrel{\rightharpoonup}{=} \quad \stackrel{\rightharpoonup}{\sigma}$
$\vec{\sim} \xrightarrow{*}$

H

実
思
$\stackrel{N}{3}$ コ
$\begin{array}{cc}\text { IH＋H } & \text { AII } \\ 148 & 137 \\ 119 & 104 \\ 133 & 163 \\ & \\ \text { Table } & 11 .\end{array}$
61
34
74
Labour

虹
旦

$\stackrel{\rightharpoonup}{\dot{G}} \stackrel{\rightharpoonup}{\mathrm{~N}}$
$\stackrel{\rightharpoonup}{\mathrm{v}}$
N．W
$\stackrel{N}{i}$
$13.4 \quad 12.8$

昌


```ATİ
```


yeri
（LL／OL6L）
$\mathrm{H}+$ II

zone crop
－01．อтqв

$\vec{\circ} \vec{ज}$ ज ज $\stackrel{\rightharpoonup}{\square}$ ज ज ज

$\vec{v} \stackrel{\rightharpoonup}{\circ} \stackrel{\oplus}{\omega}$ ज N N N N N
$\therefore \circ \stackrel{\circ}{\circ} \stackrel{\circ}{\dot{\Delta}} \quad \circ \quad \circ \quad \circ \circ$
$\begin{array}{llllllll}\circ & \circ & \stackrel{\rightharpoonup}{\circ} & 0 & \circ & \stackrel{\circ}{\circ} & \circ & \text { 章 }\end{array}$

$\vec{\sigma} \stackrel{\rightharpoonup}{\dot{j}} \stackrel{N}{\circ} \stackrel{\rightharpoonup}{\dot{j}} \quad \stackrel{\rightharpoonup}{\infty} \stackrel{\rightharpoonup}{\sigma} \quad \overrightarrow{\mathrm{G}} \stackrel{\rightharpoonup}{\mathrm{G}}$

\vec{n}
\vec{N}
$\vec{\omega} \quad \stackrel{N}{\omega} N \overrightarrow{0} \xrightarrow{w}$

 $\overrightarrow{~ \rightharpoonup}$ $\vec{N} ज \overrightarrow{0}+N \infty \vec{\omega}$
N゚N ज 心 W NON 急
G $\vec{\infty}$ जु जु $\ddagger \ddagger$ W．

 $\sigma \sqsupset \vec{N} \infty \omega \overrightarrow{0} \overrightarrow{0}$

$\infty \vec{\omega} \vec{\omega} \infty \quad \vec{\sigma} \infty$ 点

等
＋

$\Delta \sqsupset ज ゃ \rightharpoonup \omega \rightarrow$ 虫

倣

28TS Mx日

of \ddagger ज

$\nsubseteq \vec{N}$ N

Tumber of
Ouservations
$\vec{N} N \underset{\sim}{N} \underset{\sim}{\infty}$ ज 이 M M ∞

Table 22. Labour Inputs per Acre recorded in Earlier Surveys

District/Location	(mnildays/acre)					maize(SR)	
	cofiee	tea	py rethrum	maize/beans	maize(IR)		immature tea
Wyeri	250	336	104	109	-	-	146
Gem (Kakamega)	142	-	-	-	48	34	-
Bunyore (Kakamega)	183	-	-	-	42	42	-
s. Kabras (Kokamega)	73	-	-	-	23	-	-
$\begin{gathered} \text { Bokoli-Malakisi } \\ \text { (Bungoma) } \end{gathered}$	158	-	\sim	-	42	-	-
Buret (Kericho)	-	229	-	-	-	-	-
Konoin (Kericho)	-	182	-	-	-	-	-
Kitutu (Kisii)	-	363	-	-	-	-	-
ijyamira (Kisii)	-	287	-	-	-	-	-
Meru	314	-	\cdots	-	\cdots	\cdots	-

Sources: Some Aspects of Agricultural Development in lifyeri District 1964, Report ITo. 25, Statistics Division, Ministry of Economic Planning and Development 1968, and A Report on Economic Studies of Farmins in Nyanza Province 1963, Farra Economic Report ITo. 26, Statistics Division, Ministay of Economic Plaming and Development, Febriory 1969. An Eoonometric Anolysis of Smallholder Tea Production in Kenya, D. Etherington, unpublished Ph.D. thesis, Stanford University, 1970. A. Tators, Tho Cost Structurc of the Konya Coffoe Industry, unpublishen PhoD. thosis, Rice Univirsity, Texas,1969。

L＊9	$\varepsilon \cdot L$	$6^{\circ} \mathrm{G}$	$1 \cdot 1$	\＆． 1	$8^{\circ} 0$	0\＆	62	98	851	914	¢ 26	58	67	98
$9^{\circ} 8$	$L \cdot L$	でい	でし	$\varepsilon^{*} \cdot$	$1 \cdot!$	27	27	99	90¢	2LE	£6	8¢	62	6
$L^{\circ} \mathrm{G}$	$1 \cdot G$	\＆＊9	8．0	$0 \cdot 1$	LOO	Lz	O\＆	92	O¿z	LOZ	8£乙	09	18	82
6＊8	$8 \cdot 6$	でし	6．1	\square^{\bullet} て	$1 \cdot{ }^{\prime \prime}$	St	Oz	カt	191	1.51	8LL	比	14	L
$6^{\circ} 9$	$1 \cdot 8$	でも	$9 \cdot 1$	$0^{\circ} \mathrm{Z}$	6.0	Lz	18	乙乙	91．¢	OS¢	でて	69	Lt	乙て
$6^{\circ} 21$	6.78	$8 \cdot \downarrow$	$4 \cdot 0$	$0 \cdot 1$	$2 \cdot 0$	¢G	GL	2S	06	L8	16	97	\downarrow	乙2
$6^{\circ} \mathrm{t}$	$9 \cdot 2$	$9^{\circ} \varepsilon$	$8{ }^{\circ} 0$	¢0．	$5 \cdot 0$	02	82	乙	\＆LL．	¢91．	9 Ll	64	81	し
$8^{\circ} \mathrm{L}$	$5 \cdot 8$	でし	$z^{\circ} \mathrm{L}$	0^{\bullet}	$0 \cdot 1$	92	1¢	\＆	LLL	\＆Lて	cti	L	28	8\＆
$G^{\circ} \mathrm{G}$	6.9	$\varepsilon \cdot G$	$\dagger^{\circ} \mathrm{L}$	$2 \cdot 1$	$\varepsilon^{\bullet} \cdot$	Lz	GG	\＆	Sll．	9 ¢．	$1!1$	85	St	et
$9^{\circ} ¢$	9° ¢	G^{\bullet} ¢	$9^{\circ} 0$	$2 \cdot 0$	${ }^{\circ} 0$	67	98	GL	92	¢8	OL	てl	G	L
TIV	H＋	I	TT 7	H＋＋	［	TIV	$\mathrm{H}^{+ \text {\＃}}$	II	TIV	$\mathrm{II}^{+ \text {＋}}$	$\underline{1}$	TIV	H＋	I

Table 24. Aggregatc

DISTRICT	$\triangle P \mathrm{P}$	IMAY	JUNIE	(thousand mandays)		
Kiambu	697	633	802	733	753	713
Busia	1188	873	834	831	932	883
Nyeri	1674	1304	1281	1149	1127	1178
Meru	5861	54.13	4289	4285	4411	3785
Kisii	3347	3221	2977	2522	2486	2474
Kirinyaga	2624	1943	1630	1782	1428	1526
Embu	1775	1575	1467	1444	1616	1105
Kisumu	6249	4000	6096	3811	3374	2990
Muranga	5415	4054	2668	2423	3845	3582
Nandi	597	393	268	228	374	159
Miachalros	10676	11188	8248	6352	7089	7341
Kalkameça	3932	2744	1921	2064	2317	1993
Bungoma	2112	2316	1907	1241	1080	1557
S. Nyanza	4592	3891	3473	3565	3792	3347
Kericho	1152	736	616	331	307	388
Siaya	4566	3307	1054	1283	996	1136

Crop Labour Profiles for Districts* ${ }^{*}$

OCP	NOV	DEC	JAN	FEB	MAR	CV	No. months 5 of peak
							0
703	635	650	687	525	641	10.4	0
767	762	746	796	737	775	14.7	0
1169	990	1055	960	1069	1208	15.9	0
4584	5348	4098	3494	3410	3502	18.5	0
2559	2367	2371	2218	1530	1652	21.9	2
1774	1674	1245	1330	1297	1645	22.4	2
1104	1628	845	939	1056	1566	23.3	1
2604	2184	2233	4414	4487	4175	34.3	4
4165	3073	1808	1718	2002	3051	35.3	5
262	281	275	208	207	316	39.0	8
4930	8275	6784	4366	2575	3158	39.9	4
1633	1366	1261	1422	1484	1131	40.5	7
1420	904	816	612	575	633	47.8	6
2506	1536	1160	1024	1333	1290	49.1	5
386	228	229	365	454	532	54.7	9
935	212	144	301	136	791	109.1	10

Table 25. Average Wages in Small Scale Agriculture by Iype of Bmployment, 1970/71

District	Reg/Cas wage	Oasual wage	$\begin{gathered} \text { Regular } \\ \text { Wage } \end{gathered}$	Average All labour	Farms Hiring Regular Iabour as percent of Farms Hiring Iabour	No. of (ibservation
Huranga	2.7	2.4	2.3	2.6	30	64
Meru	2.5	2.1	2.0	2.2	66	64
Bungoma	-	2.5	-	2.6	28	18
Kirinyaga	2.6	2.5	-	2.6	32	56
Nandi	1.7	2.1	-	1.8	30	37
Taita	2.6	1.9	-	2.0	19	36
Kilifi	-	3.2	-	3.1	67	16
Siaya	-	-	-	1.8	23	17
Kisii	-	3.1	-	3.0	10	31
Kisumu	-	1.5	-	1.4	38	24
Nyeri	2.6	3.2	-	2.8	52	29
Ihachakos	2.4	3.9	2.1	2.5	60	60
Kakamega	-	2.5	-	2.5	33	18
Kiambu	3.1	3.0	-	3.0	27	70
Kericho	2.3	2.7	2.2	2.3	82	72
Busia	-	1.6	-	1.6	14	43
Embu	-	3.2	2.5	2.7	38	45

Source: Faim Fnterprise Cost Survey 1970/71, Ministry of Finance and Planning.

Footnote: the average wage for a given type or employment is only given ir the number of farms hirine that type of lebour in the sample oxceeds 9.

