```
A MULTIVARIATE AREAL ANALYSIS OF PROGRAMME
    AND NON-PROGRAMME EFFECT ON FERTILITY
    IN PAKISTAN
    GHULAM YASIN SOOMRO
M. NASEEM IQBAL FAROOQUI
    HUSSAIN BAKHSH SIYAL
```


PAKISTAN INSTITUTE OF DEVELOPMENT ECONOMICS, ISLAMABAD POST BOK 1091, ISLAMABAD
 [PAKISTAN]

M. GHAFFAR CHAUDHRY (Convenor)

KHWAJA SARMAD
KHALIDA PARVEEN ZAKI

L

The authors would like to express their gratitude to Professor Syed Nawab Haider Naqvi, Dirctor, PIDE, for his continued encouragement and guidance. They are also thankful to Professor Gayl D,, Ness, Professor Albert I. Hermalin, Dr. Zeba A. Sathar and Dr. Robert D. Rethertord for their valuable suggestions.

INTRODUCTION

The second stage of demographic transition in which many developing countries are caught has led to a rapid rise in the rate of population growth, despite concious efforts to break through the constancy of this stage. The third stage of demographic transition whjch the developed countries have already reached is characterized by a regulated rate of fertility level. Though the peculiar dynamics of this transition have not yet been specified, there is evidence that a significant role was played by late marriages and to some extent by the use of traditional contraceptive techniques /5/. The Industrial Revolution and the consequent socio~economic modernization process in developed countries reinforced the pace of this tronsition.

The postwar 'Baby Boom' in the U.S.A. stimulated the interest of both the demographers and the economists to analyze this phenomenon. The concomitant prevalence of overall economic prosperity, led many economists to come up with an economic explanation of the 'Baby Boom', Within this context mention can be made of the survey conducted to study fertility behaviour of wealthier section of the New Jersey population in 1960 by Becker (an econonist) /1/ The survey led to the conclusion that incone is positively related to fertility with the obvious implication that family decisions were determined within income constraints.

However, Becker's fertility paradigm was contradicted by the experience of developing countries where higher fertility was prevalent mostly mong the poor.

This phenomenon was explained by the proponents of Neo-Malthusian as the result of a "contraception failure", which obviously arcse from the non-availability of contraceptive technology in the less developed countries. Consequently, the institution of a family planning programme was advocated to provide birth control services.

This rationale for the family planning progranme was criticised as the ultimate means to an end and an alternative methodological conception was presented that gave greater weightage to socio-economic factors in influencing the fertility levels. It was postulated that fertility was influenced simultaneously by the family planning programme and through the process of socio-economic development which influence the overall social well being through changes including income, consumption, production, employment, opportunities for education, health, nutrition, age at marriage and fertility levels of the geographic areas receipient of such development. Thus it was extromely difficult to evaluate the corresponding influence of programme and non-programe factors in the decline of fertility levels. In a xesponse to this problen, it was felt to look at the fertility on an aggregate level and mesiake the effects of program and non-program factors on an areal basis.

A consolidated population policy was adopted in Pakistan during the Third Five Years Plan (1965-1970) period /11/. As a result of this, an organized family planning program was established to provide contraceptive services to the couples. The program was started at the national level that included many districts of the Punjab and sind,
few districts of NWPP, one district in Baluchistan, and in some areas of the Federally Administered Tribal Agencies. "The technique of areal

demographic and progam factors fecting fertility in Pakistan.
The major objective of this study is to identify both program and non-program deteminants of fertility and to observe the contribution of socio-economic development within the districts of the country affecting adoption of program methods and their subsequent effect on fertility.

DATA AND ITS LTMITATIONS:

Data for this study has been obtained front the Population Censuses 1972 and 1981, Agricultural Census 1972, Family Planning Service Statistics 1973-74 / 3, 20 4, 21/.

Information on socio-economic and denographic characteristics concerring income, education, enrollment, agricultural workers, proportion married, total fextility rate, age-sex adjusted bisth rate, family plaming personnel, expenditure and couple years of protection were gathered for 39 programe districts. The variable per capita income was an aggregate of crop cash value per capita and industrial value added per capita for the year 1975-76./The information on education was obtained from Population Census 1972 for the percent literate population aged 10 years and over defined as thsoe who could read and write with understanding regardless of any language. The encollment statistics of students for both sexes in secondary schools was taken from the statistical bulletin of Ministry of Education /17/ The index of agricultural workers was obtained from the Agricultural Census 1972 involving both
household members and hired workers aged 10 years and above engaged in the agriculture sector. This index was an aggregate for both the sexes. The proportion married aged 20 to 29 years was calculated from the population Census, 1972. Total fortility rate (TFR) and age-sex adjusted crude birth rate (CBR) were estimated indirectly from the age structure yielded by the relevant distriet populations in the population Census, 1981. The family planning service statistics was used to extract information on family planning personnel, expenditure and couple years of protection for the fiscal year 1973-74. The list of personnel included field motivators and other non-administrative staff who were directly involved in family planning operation at the interface level. The expenditure on communication included funds expended on mass media compaigns for dissimination of family planning information. The index of couple years of protection (CYPs), an administrative index that was used in pakistan programe to comparo performance among the districts by providing protection against the risk of pregnancy to the target populaw tion was weighted for all programme methods which vary in average length of protection.

The analysis involving the assessment of development impact on fertility becomes difficult due to the fact that development affects fextility indirectly depending upon the level of input of various development programes operating simultaneously in a given axea. In this situation assessment of relevant contribution of each programe becomes difficult to control for the study of fertility behaviour. In these circumstances, development of a paradigm which takes into account the nature and direction of association between variables adequately is a complex phenomenon. This complexity of interrelationships between development and fextility causes problems in specifying
the model. Stoeckel while describing these issues of macro level data categorized four types of data limitations namely simultaneity, incompletness, time lags and multicolinearity. L22/. Simultaneity creeps into the relationship between two variables which nakes it difficult to draw causal inferences. Incompleteness of specification due to non-availability or measurement error in data could also lead to spurious results. Time lags allowed for mcasurement of development impact on fextility may be insufficient becanse of the fact that changes in fertility are hardly a short-run phenomenon, Multicolineaxity among the independent variables influence the effect and confidence limits making it difficult to determine their individual effect on fertility. The limitation with progranme service statistics at the first place is that it was gathered under the doctorine of goal attrinment model with mandatoxy targets assigned to the personnel. The measurement of couple years of protection is therefore a result of the targets achieved through the distribution of various program methods. In this situation, estimated figure of CYp's may be upwardly biased due to lack of any feedback on their ending into an effective use. The overestimation of prcyrame performance in relation to obsexved fertility decline appeared to be 4.1 percent highex controling for changes in demographic parameters such as age structure, marital. status, marital fertility and proportion of women in reproductive ages in total population 10/. This figure was achieved on the assumption that all the observed decline in maxital fertility was entirely due to programme effect and no allowance was given to non-programme contraception. However, from the robustness standpoint, the CYPs figures in this study were therefore discounted by 50 percent for all the districts taken into consideration.

METHODOLOGY

areal analysis through the technique of dationalysis inas oeen: applied in this study $L 13,0,16 /$. The unit of observation taken in this tecnnique is any sub-set of geographical unit or any other administrative area. The unit selected in this stuay is a district which is an adninistrative unit after a province and aivision. In this type of analysis a plausiole measure of aggregate fertility is regressedragainst the programe and non-programe variables. In this study two fertility measures namely total. fertility rate (mpr) and age-sex adjusted crude birth rate (CBR) have been used as dependent varialles...These two measure were estimated indirectly from the 1981 Population Census age structure by application of Rele's method based on the stable population model $/ 22 /$. The underlying assumption in this method is that the mean length of generation of the population concerned lies between 23 and 29 years. The indirect estimates would be robust if the mean length of genexation ranges in the assumed length of period. Rele derived measures of fertility for the European populations that tended to bo too close to the actual levels:of fertility of those populations although Euxopean populations had been experiencing substantial migration within and outside their borders. Henenberg also used this technique to arrive at the estimates of fertility for the provinces of Pnailand 112/. His estimates however, did not seem to differ mrdch from those obtained by other techniqucs. The mean length of gencration in the case of Pakistan comes out to be 28.2 years which is a well assumed range. The derived estimates of fercility levels were for the calender year 1975. The average figures for TFR and CBR derived indirectly for Pakistan appeared to be 6.5 and 40.8 respectively. The robustress of
these measures could be observed from the close comparison of these with Pakistan Fertility Survey (PFS), 1975 which revealed these figures to be 6.3 (TFR) and 40.5 (CBR) respectively. (See technical note in appendix $)$.

Ihe application of $C B R$ as dependent variable is not considered a satisfactory measure because of its heavy dependence on age structure unless it is standardized. Kitagawa /ls/observed that age-sex standardized crude birth rate may not strictly control for age and sex ckmpositional differences. However, the use of CBR in this study as Y variable is to check its relative strength against. TFR. As stated earlier path analysis has been used in this study to determine the total effects of family planning programme and development on fertility. This is an interpretational technidue which helps to determine the appropriate set of dependent and independent: variables which provide causal oxdering between a set of variables. 'The choice of this multivarinte technique was made due to its comparative advantage in jsolating the unknown effects of exogenous variables on deperment variable. Heremalin described Path Analysis, "........ a multivarate technique useful in explicating linear causal models. It bears close affinities to multiple regression analysis but helps make explicit the underlying assumptions and interconnections The correlation betwern two variables can be decomposed into a direct, indirect and the joint effects shared with other variables in the system" /13/. "Ihe underlying assumptions in Path Analysis are that there are no interaction or multicolinearity in effects of independent variables and the causal order of the variables is non-circular. However, to avoid the multicolinearity problem a composite socio-economic development variable ranked on Z-score and estimated by Principal Component Method was used as an exogenous variable.

$$
-8-
$$

Srinavasan in this respect pointed out that regression on u's yields coefficients that are more meaningful and reliable compared to similar excercise made on X^{\prime} s. 124/. In this study a composite socio-economic development variable was used with programine variables to study and compare their effects on fertility against the set of development variables used separately.

To account for the issue of time lag, the variables of education, enrollment, and agricultural labour force were lagged to three years prior to fertility. However, the income variable was available concurrestly to the dependent variable. Programe variables were lagged by one year to observe the desired effect on fertility.

Path coefficients were estimated by following equations:

$$
\begin{aligned}
Y_{1}= & P_{12} X_{2}+P_{13} Y_{3}+P_{11} X_{1}+P_{12} X_{2}+P_{13} X_{3}+P_{14} X_{4}+P_{15} X_{5} \\
& +P_{16} X_{6}+P_{11} R_{u} \\
Y_{2}= & P_{21} X_{1}+P_{22} X_{2}+P_{23} X_{3}+P_{24} X_{4}+P_{26} X_{6}+P_{24} I_{W} \\
Y_{3}= & P_{31} X_{1}+P_{32} X_{2}+P_{33} X_{3}+P_{34} X_{4}+P_{35} X_{5}+P_{36} X_{6}+P_{3 u} R_{V}
\end{aligned}
$$

where:
$Y_{1}=\begin{aligned} & \text { Jotal Fertility Rate (TFR) in year } t \text { and again substituted } \\ & \text { for Crude Birth Rate (CBR) in year } t .\end{aligned}$
$Y_{2}=$ Proportion married aged (20-29) in year $t-3$
$Y_{3}=$ Couple years of protection in year t-1
$x 1=$ Per capita income in year t
$X_{2}=$ Level of education in year t-3
$X_{3}=$ Secondary Enrollment Ratio in year t-3
$X_{4}=$ Agricultural worker's in year t-3
$X_{5}=$ Family Planning Personnel in year t-ll
$X_{6}=$ Family planning Expenditure on Communication in year twi

In the second set development variable was used as following:

$$
\begin{aligned}
& X_{1}=P_{12} Y_{2}+P_{13} Y_{3}+P_{11} X_{1}+P_{12} X_{2}+P_{13} X_{3}+P_{1 u} R_{u} \\
& Y_{2}=P_{21} X_{1}+P_{22} X_{2}+P_{23} X_{3}+P_{2} u^{R_{w}} \\
& Y_{3}=P_{31} X_{1}+P_{32} X_{2}+P_{33} X_{3}+P_{3 u} R_{v}
\end{aligned}
$$

where:
$X_{1}=$ Composite Development Variable
$X_{2}=$ Family Planning Personnel
$X_{3}=$ Family Planning Expenditure.
Finally, a multivariaie analysis of outliers was perfoned to detect the deviant cases and exminc goodnuss of i it of the equations under the assumption that error terms are independent with zero mean, homogenous variance and normal distribution /7/. The residuals were plotted against the predjcted Y and outliers were examince by looking at the data points laying three standard deviations plus or minus of zero mean of residuals at the scatter plot. All the residuals were found to be almost chustored around in the mage of plus or minus 1,0 standard deviation.

THEORETICAL CONSIDERATIONS IN MODEL
The study utjilizes three sets of explanatory variables to study their impact on fertility on areal basis. These include developmental, demographic and programe variables. The vaxiables indicative of level. of development used in the model are income, education, enrollment and percentage of workers in agriculture sector. Marriage rate as nuptiality variable was selected in the model and two input variables personnel and expenditure and one output variable couple years of protection wexe used as programme variables. The choice of nuptiality and contraception as interm mediate variable was made under historical perspective of denogiaphic transition theory where delayed marriages and celibacy were the major determinants of fertility decline together with the use of traditional
contraceptive methods in the European populations. The uptim ality changes and limited use of traditional contraceptive methods in the European populations. The nuptialily changes and limited use of traditional methods was a byproduct of socio-sconomic development taking place durinc European Industrial Revolution.

The conceptualization of the variables is guided by Economic Theory of fertility, Tnterrelationships of supply and demand concepts under dilution model are explained with relevant variables used in the model. It may further be pointed out that demand theory of fertility works on a priori level in a developing country like pakistan. Tho empirical testing led Derray to conclude that, "Although flawed by cextain methodn ological problems, the empirical investigation carried out in this paper points quite clearly toward the conclusion that demand models of fertility axe as effective in explaining variations in children ever born in 'nutural fertility' populations as they are in contracepting populations". /6/.

Per capita income has been concoptualjzed as an indicator of income distributions, When development takes place it increases income levels in a more un-skewed fashion. 'This provision of mure resources influences demand to satisfy wants. If prices are held constant, the rise in income will create demand both for comoditios as well as for children implicating positive relationship of income with fextility. Detray while analyzing domand for children with a proxy variable of income argued that "if one accepts this interprotation then the demand theory hypothesis that wealthier families have more children is supported by virtually every wealth proxy" /6/. However, the development under human capital theory induce to invest more in chilaren to improve upon their qualj.ty. The trade off between quantity
and quality of children, under pure income effect, will create demand both for more number and bettex quality children. Beck r and Levis argued that quality of children becomes cheaper than quantity resulting into substitution for fewer and expensive children /2/. Within this perspective, Williams explained that, "The usually observed negative association of. fertility and income occurs because rise in incone are usually associater with price changes" $/ 26 /$. The composite efiect of income on other environ. mental variables is explained in this fashion. The rise in income reduces infant and child mortality, afeects birth interval in either way depending upon prevalent breast feeding practices, influences spacincj direetle in relation to desired family size to be achieved at preferred timing which is responsive to sociomeconcmic developmont /26/. Thus; the quality anc biological timing of births lead towards controlled fertility in which contraceptive technology aids rogulate the furtility.

Education is an important social development variable which reflect; the level of its distribution on areal basis, Mnis affects the environments by creating awarness, vertical social mobility and receptive. ness towards innovations. Education not only represents sociomconmic lovel of the area but sexves as a proxy of status and wealth. In this causal order, education influences the tastes of boople by exposing thent to alternative life styles and improving their level of information /9/. All of these effects lead towards rationale approach in decesion making including that of number and quality of children. The effect of education on fertility has been found negative not because of causality but because of perceived selection process guided mainly by tasties.

Enrollment of children at seconaary stage of schooling is reflective of the availability of educational opportunities and quality concept of children. This is an outcome of prevailing spread
of adult education among parents at the household level who decide for quality over number bearing in mind the cost of children. In this way the negative association of enroliment has been observed with fertility and positive with controll of fertility. The quality aspirations affect enrollment positively which causes delay in marriage. In this causal order enrollment has negative association with marriage rate.

The index of percent agricultural workers characterises rural setting, poverty and illicxacy in LDCs. Agriculture is labor intensive sector where the child labour contributer in agricultural output as an agent of production to augment the household income. This value of children leads to earlier marriages and higher family size levels which lead to conceptualizing its positive relationship with fertility.

The demographic supply variable of marriage rate affects fertility directly. Taken as intermediate variablo, this reflects the impact of marital fextility of highly fertile age group of $20-29$ year depending upon the onset of reproductive period on fertility. the process of economic development causes decline in marriaye rate when decisions to seek more education guided by qualitative human capital are operative in the society.

Fanily Planning supply variablo, expendituxe on communication, is aimed at providing family planning information so as to cauce an attitudinal change in reproductive behaviour fogether with providing information on sexvices availability and personnel as well as to cater services and persons to person motivation. The prevelence of knowleage and availability of modern effective contraceptive methods at low cost
together with quality consideration of children cause a decline in fertility resulting into decline in fertility aspirations for family size desires. This would lead towards small family size norms achieveable through regulated fertility behaviour.

ANALYSIS OF RESULTS

The interpretation of the results is based on areal mit of district in this study. While analyzing aggregate data, oution was taken to avoid the problem of ecological fallacy. This problem arises in making generalizations based on empirical evidence that the results which hold for area may not nocessarily be true for the individual behaviour. The results of Path Analysis are presented in Table 1 and 2 where as correlation matrix of all the variables involved in the anelysis is given in Table 3. The diagramatic representation of the methods are portrayed in figure $1,2,3$, and 4 . λs is evident the decomposition of direct, indirect and total effects of path coefficients are presented in Table 2 whereas their causal ordering is given in path diagrams, ft may be pointed out that in figure 1 , the effects of programme and non-progranme variables are depictod on total fertility rato (TFR) whereas in figure 2 similar effects are shown on age sex adjusted crude birth rate (CiB). Similarly in figure 3 and 4 , the effects of composite development variable together with programme variables are shown on $T \mathrm{TR}$ and CBR respectively.

It may be observed from the four given models that variables are affecting fertility through three difforent paths namely nuptiality, contraception as well as directly as indicated by the pointing arrows. This causal ordering of the variables and theix subgequent effect on fertility through different paths cannot be achieved by the simple application of multiple regression analysis. Furthemore, it may also
be pointed out that all the models in this study aro best fit at the conventional levels of statistical significance:

The variable of adult education showed the problem of multicollineara ity with urbanization and to some extent, with the linearized density through natural logarithm. However, these two variables which embody the urban characteristic were run separately with education on the depondent variable, TFR. The variable of urbanization increased the cofficient of detemmination by 4.2 percent whoreas donsity explained 0.6 percent of such an increase in R^{2}. To strengthen the significance lovol of path coefficients, both of these variables were, therefore, discarded from the analysis against education which representea the contents of areal development adequately.

Taking into consideration the role of intermediate variables, it may be observed that nuptiality is determined as usual by developmental variables with school enrollment exerting the most significant effect. The probable explanation for this significance is that highex correlation of this variable with nuptiality as compared to income and education. The implication of this significance can be accounted by the fact that encollment represents two distant effects of its own. Firstly it represents the areal effect of socio-economic development as well as the prevailing schooling opportunitius. Secondjy it reflects the level of parents education. Therefore, higher level of areal development would under human capital theory induce parents to invest more in children for a better quality over quantity of children, In Pakistan socicty where family decision are taken by parents, the educated paronts prefer their chilaren 1. The relative increase in R^{2} explanation was measured by this general. formula of multiple partial coefficient.

$$
r_{l}^{2}(j k \ldots n) \cdot t u \ldots w=\frac{R_{i}^{2} \cdot j k \ldots w-R_{i}^{2} \cdot t u \ldots w}{1 \cdots R_{i}^{2} \cdot t u \ldots \ldots w}
$$

For details see Blalock, H, "Social Statistics", 2nà Eun. McGraw Hill, N.Y. 1972.
to seek more education that causes delay in age at marriage. Similarly, the intermediate variable of contraception was affected both by developmental and programme input variables. Notable anong tirese is the adult education which is highly significant in its effect on contraception. In order to achieve quality objectives of childxen, educated parents tended to adopt contraception for substituting quality over quantity of their children. The quality aspects of children incorporate the element of cost incurred on tham making chjudren an expensjve commodity which resulted into contxaceptive behaviour to limit the quantity guided by utility function. This finding therefore corroborates the earlier research that contracepw tion in a natural fertility society like Pakdstan was also guided by demana theory for children /6/ The other variables of jmportance were the expenditure on family planning communication and the agricultural workers which were appropriato in direction and significant at 10 percent confidence level.

The programe policy variable of expenditure derives its strength from the fact that the government has already invested huge sums of money in the national progranue to create attitudinal changes for effective demand for contraception. It may be emphasized that choice of expenditure variable which incorporates the amount of expenses incurred on dissimination of family planning information through mass media proved to be more powerful in its effect on contraceptive use than the wfect due to family planing personnel. The path coefficients of agricultural workers, however, reprom. sented the traditional resistence towards innovations especially in regard to regulated fertility behaviour.

The examination of the model as a whole shows that nuptiality and education exerted significant direct effects on fertility.... Other
variables of importance were the family planning personnel and contracem ption. Although theix effects was not significant yet weresubstantial in magnitude. The positive path coefficient from contraception to fextility signifies the work of multicolleniariety between exogenous varimbles although the correlation between these two was negative. The other explanation could be that programe was highly successful in enrolling the high age and parity women. Because of this reason, the analysis. from micro level survey data also showed positive effect of contraception on fextility. Moreover, the relatively insignificant impact of contraception on fextility was probably due to the lower rates of prevalence as indicated by periodic demographic sample surveys. The programme personnel's direct effect on fertility appears to be spurious in causal ordering of the framework. However, the direct effect of programe personnel could be an outcome of person to person communcation. This variable did not seem to transform its effect through programe contraception, the likely explanation for this phenomenon could be the work of catalytic effect of contraception. It is apparent from Table-2 and rigure-1 that socio-economic and programme variables wexe affecting fertility directly as well as through intermediate variables nuptiality and contraception. The variables affecting fertility substantially through their indirect effects were adult education and enroliment ratios. About 41 percent effect of adult education on fertility was through contraception only whereas enrollment showed 73 percent of such effect on fertility through nuptiality. These findings could also be corroborated with the findings from mioro level data of Pakistan Fertility Survey, 1975. Nizamuddin found the most significant effect of wife's education on contraceptive use where as Mehtab found strong influence of school attendance on delayed marriages 118,14/. The effect of income appeared to be insicgnificant but appropriate in direction. However, it mostly influenced fertility directly and only

Table 1: Path Coefficients of Exogenous Variables in Model
(t-ratios in parenthesis)

Depundent variable	Composite variable:	Inconte	$\begin{aligned} & \text { Educa- } \end{aligned}$	$\begin{aligned} & \text { Propor- } \\ & \text { tion } \\ & \text { married } \end{aligned}$	Enrollment	Agricul- ture Labor force	Faraily Planning Personnel	Faraily Planning Communication Expenditure	Couple year protec- とion	p^{2}
TFE	-	$\begin{aligned} & -0.08428 \\ & (0.590) \end{aligned}$	$\begin{aligned} & -0.43445^{++} \\ & (2.729) \end{aligned}$	$\begin{aligned} & 0.37074^{++} \\ & (2.390) \end{aligned}$	$\begin{aligned} & -0.07340 \\ & (0.507) \end{aligned}$	$\begin{aligned} & 0.28368^{t} \\ & (1.690) \end{aligned}$	$\begin{aligned} & -0.32458^{+} \\ & (2.024) \end{aligned}$	$\begin{aligned} & -0.2097 i \\ & (1.350) \end{aligned}$	$\begin{aligned} & 0.33834+ \\ & (1.700) \end{aligned}$	0.50264
C3R	-	$\begin{aligned} & 0.02136 \\ & (0.152) \end{aligned}$	$\begin{aligned} & -0.35120^{+} \\ & (1.955) \end{aligned}$	$\begin{aligned} & 0.42307^{++} \\ & (2.510) \end{aligned}$	$\begin{aligned} & -0.12101 \\ & (0.700) \end{aligned}$	$\begin{aligned} & 0.31898^{+} \\ & (1.771) \end{aligned}$	$\begin{gathered} -0.23297 \\ (1.340) \end{gathered}$	$\begin{aligned} & -0.12124 \\ & (0.074) \end{aligned}$	$\begin{aligned} & 0.44859^{+4} \\ & (2.090)^{4} \end{aligned}$	0.41903
TFR	$\begin{aligned} & -0.15043 \\ & (0.744) \end{aligned}$	-	-	$\begin{aligned} & 0.45735^{++} \\ & (2.820) \end{aligned}$	-	-	$\begin{aligned} & -0.21456 \\ & (1.300) \end{aligned}$	$\begin{aligned} & -0.16263 \\ & (0.970) \end{aligned}$	$\begin{aligned} & 0.05009 \\ & (0230) \end{aligned}$	
CBR	$\begin{aligned} & -0.08110 \\ & (0.387) \end{aligned}$	-	-	$\begin{aligned} & 0.51742^{+4} \\ & (3.083) \end{aligned}$	-	-	$\begin{aligned} & -0.12487 \\ & (0.723) \end{aligned}$	$\begin{aligned} & -0.09961 \\ & (0.754) \end{aligned}$	$\begin{aligned} & 0.13070 \\ & (0.840) \end{aligned}$	0.29117
Marriage Rate	-	$\begin{aligned} & -0.14736 \\ & (0.925) \end{aligned}$	$\begin{aligned} & -0.10734 \\ & (0.686) \end{aligned}$	-	$\begin{aligned} & -0.32567^{++} \\ & (2.113) \end{aligned}$	$\begin{aligned} & 0.23899 \\ & (I .333) \end{aligned}$	$\begin{aligned} & -0.15479 \\ & (0.851) \end{aligned}$	$\begin{aligned} & -0.14018 \\ & (0.340) \end{aligned}$	-	0.30760
Contraception	-	$\begin{aligned} & 0.11456 \\ & (0.921) \end{aligned}$	$\begin{aligned} & 0.40374^{++} \\ & (3.302) \end{aligned}$	-	$\begin{aligned} & 0.03591 \\ & (0.714) \end{aligned}$	$\begin{aligned} & -0.25665^{+} \\ & (1.840) \end{aligned}$	$\begin{aligned} & -0.09062 \\ & (0.646) \end{aligned}$	$\begin{aligned} & 0.24879^{+} \\ & (1.909) \end{aligned}$	-	0.57796
Marriage Rate	$\begin{aligned} & -0.43782^{+t} \\ & (2.867) \end{aligned}$	-	-	-	-	-	$\begin{aligned} & -0.02848 \\ & (0.176) \end{aligned}$	$\begin{aligned} & -0.14076 \\ & (0.847) \end{aligned}$	-	0.23654
Contraception	$\begin{aligned} & 0.56285^{++} \\ & (4.949) \end{aligned}$	-	-	-	-	-	$\begin{aligned} & -0.25160^{+} \\ & (2.081) \end{aligned}$	$\begin{aligned} & 0.22102^{+} \\ & (1.786) \end{aligned}$	-	0.57640

[^0]Rw=0. 832

* Path coefficients significant at 10 percent level

PATH DIAGRAM OF EFFECTS OF SOCIO-ECONOMIC, DEMOGRAPHIC AND PROGRAMME VARIABLES ON
CRUDE BIRTH RATE (CBR)
$R W=0.832$

Exoenditure
**Path coefficients significant at 1 to 5 percent level.

* Path coefficients significant at 10 percent level.

ソニxíbie or rertility

Table 3: Correlation Matrix of Variables in Path Model

	1	2	3	4	5	6	7	8	9	10	11	12	13
Crude Birth Rate	1.000	0.878	-0.115	-0.254	-0.28 ${ }^{4}$	0.235	-0.242	0.500	-0.128	-0.053	-0.031	-0.360	-0. 207
Total Fextility Rate		1.000	-0.251	-0.414	-0.298	0.265	-0.306	0.530	-0.102	-0.196	-0.17i	-0.250	-0.343
Income			1.000	0.258	0.202	-0.281	0.308	-0.288	-0. 292	0.099	0.169	0.036	0.044
Education				1.000	0.176	-0.215	0.782	-0.253	-0.186	0.200	-0.067	0.374	0.818
Enrollment Ratio					1.000	-0.174	0.236	-0.430	-0.064	0.165	-0.286	0.481	0.333
Agricultural Labour	Force					1.000	-0.128	0.328	0.505	-0.328	0.094	-0.060	-0.251
Urbanization							1.000	-0.337	-0.074	0.174	-0.116	0.498	0.898
Proportion Marriod								1.000	0.084	-0.221	0.127	-0.512	-0.459
Fmily Planning Per	rsonnel				-				1.000	-0.437	0.072	-0.051	-J. 137
Family Planning Exp	penditu									1.000	-0.041	-0.054	0.251
Couple Years of Pro	otectio										1.000	0.278	0.650
Log Density												1.000	0.603
Development Variabl													1.000
ivean	40.807	6.487	661.915	29.051	27.023	44.990	22.228	85.272	0.208	3.944	20.755	5.008	3.354
Standard Deviation	3.970	0.527	255.227	9.822	24.190	12.584	16.603	5.348	0.100	2.093	7.056	0.881	15.070
Coefficient of Variability	0.097	0.081	0.384	0.338	0.895	0.280	0.747°	0.063	0.482	0.531	0.340	0.018	0.256

16 percent indirectly that was more pronounced through nuptiality (55 percent) than contraception. There could be two reasons for this insignificant effect of income. Firs tly, it was not lagged prior to fertility and secondly the effect was most probably taken away by the powerful proxy variable education. The effect of others was not so apparent.

What emexges out from the analysis of model l is that the programe was effective mostly through the impact of social development variable of education signifying its spread and growth among the areal units. However, the programme input of communjoation helped increase the programe contraception reflecting mass media effect on attitudinal change in stimulating demand for contraception.

Instead of using four socio-economic variables in Path Analysis a composite socjomeconomic variable developed elsewhere was utilized in model-II /19/. The resultes of this model are not as illuminating and relevant as those of model I in explaining conceptual aspect of economic theories of fertility for policy purposes. The development variable affected fextility mostly tnxough intormediate variables. This could be due to high level of aggregation of development variabless for developing a single composite variable. The policy suggestions based on single composite variable becomes difficult to offer due co its inappropriateness in netting out the effect of specific developmental inputs influencing fertility that are lost mainly due to aggregation.

Model ITI and IV represent CBR as dependent variable to the Path Analysis. The comparison of effects with those of model I and II show that some changes in these path coefficients which were affecting fertility directly have occured. This is bacause of the methodological differences in the measurement of TFR and CBR. However, as pointed out

FIGURE-2
PATH DIAGRAM OF EFEECTS OF SOCIO-ECONOMIC, DEMOGRAPHIC AND PROGRAMME VARIABLES ON TOTAL FERTILITY RATE (TER)

PATH DIAGRAM OF EFFECTS OF SOCIO-ECOINOH DEMOGRAPHIC AND PROGRAMME VARIABIES ON CRUDE BIRTH RATE (CBR)
$R w=0.874$

$\mathrm{Rv}=0.651$
**Path coefficients significant at 1 to 5 percent level.

* Path coefficients significant at 10 percent level.
earliex in the section on methodoloyy and in technical note, the derivation of CBR is subject to a some what suvere data jimitations of constant relative age specific fextility rate (ASFR) and age mis-reporting that might have resulted in somewhat weakening of direct path coefficients from developmental and programe variables to CBR.

POGICY TMPLICATTONS

The results of the analysis suggest that fertility is affected not only by level of socio-economic development but separately by nuptiality and contraception. The salient feature of this analytical study is the way in which contraceptive adoption is detormined in a whole framework of sociomeconomic analysis. The dominant factor affecting contraceptive adoption is the variable of education followed by programme variables. Education which encompasses the component of encollment and also serves as a proxy for income delays marrjages, induce family planing adoption and subsequently alters the fertility behaviour. This also implies that ducated couples are engaged in substitution of quality over quantity of theix children. The demand models of fertility, therefore, appears to be operative under such circumstances in Pakistan. The policy suggestions of this analysis are that improvement in distribution of education be effectively implemented so as to impart the benefits of education to all areas through spread of educational opportunities. The other policy suggestion is that promamme activities be intensified in those areas which are comparatively cost effective in programe operation. The impact of expenditure on family planning communication suggest that this was the only programe input variable which increased
acceptance by stimulating demand for contraception through motivation. It may be added that contraceptive use guided by development implies the use was already motivated due to savourable behaviour towards the adoption of innovations whereas the use guided fy programe communication was the result of programe efforts that under-scores the importance of repeated mesfage of family planing through mass media. Therefore, it is an urgent need to enhancing the activities of programme in the field of mass communication. Moreovew, the managerial and administrative skills of programe personnel involved in the programme need to be organized so that effective utilization of their services is made at the interface level for planed output.

SUMMARY AND CONCLUSIONG

The areal analysis of fertility was carried out by employing socio-economic, demographic and progxamme variables at district level. Technique of Path Analysis was utilized to determine the direct and indirect efferts of socio-economic and proglame variables on fertility. The measures of fertility employed in the study woro $T F R$ and $C B R$ derived by indirect technigue of estimation. The path analytical results based on TRR as a dependent variable appeared to be significant and consistent, The social development variable of education appeared to be a significant variable to affect fertility directly as woll as through intermediate variables of nuptiality and contraception. The indirect effects of path Analysis, however, showed that adult education worked through contraception whereas enrollment affected fertility through nuptiality. The programme input variable expenditure was observed to be affecting fertility through contraception whereas personnej. affected fertility directly. The direct effect of programe
appears to be spurious in the context of casual ordering of variables in the model. . However, if accepted it could be presuraed that attitudinal changes due to personnel's efforts led to both programme and nonprogcamme contraception and this effect through contraception was probably concealed by the work of catalytic effect. In a traditional society like pakistan where majority of population is in rural areas watn preaminant agriculturat setting, the effect of agricultural workers showed a resistence to delayed marriages and adoption of contraception.

Appendix

TECHNICAL NOTE

This note describles the procedure adopted for estimation of Total Fertility Rate (TFR) and Gross Reproduction Rate (GRR) for the 39 programme district populations by application of Rele Method $/ 22 /$. The basic approach followed by Rele was to derive a relationship between the Child-woman Ratio (CWR) and the Net Reproduction Rate (NRR) among a set of stable populations. Lotka's formula of stable population was adopted to derive the above relationship. Using conventional notation, Lotak's formula can be written as:-

$$
C(a)=b e^{-r a p}(a)
$$

where,

```
C(a) = Proportion of Population in age group a, atda
    b = Intrinsic birth rate
    r = Intrinsic growth rate
    P(a)= Survival ratio Erom birth to age group a, atda
```

In discreet form for quinquinneal age group, the äge structure of the stable population an be shown as under:-

$$
c(a, a+5)=b e^{-x}(a+2.5)
$$

On the basis of this relationship, the measure of child woman Ratio was derived in stable population which yielded an equation depicting almost a linear relationship between the Child-woman Ratio (CWR) and the Net-Reproduction Rate (NRR) for any given level of mortality. The linearity was further improved by selecting the age range for the Child-woman Ratios such as $\frac{C(0-4)}{15-19}$ and $\frac{C(5-9)}{20-54}$. In oxder to convert
the Child Woman Ratios into Gross Reproduction Rates, polynominal of zero degree to Child Woman Ratio and Gross Reproduction Rate in stable populations for various mortality levels were fitted with Gross Reproduction Rate surving as dependet variable.

The derivation of Crude Birth Rote (CBR) from the Child-Woman Ratio (CWR) involves the estimation of intrinsic birth rate from the Childwoman Ratio and then the estimation of Gude Birth Rate (CBR) from the intinsic birth rate. Since the relationship between the Child-woman Ratio and Intrinsic Birth Rate in stable population is curvilinear, a second dogree polynomial was fitted to stable population of various mortality levels with intrinsic birth rate as dependent variable. For dexiving Cxude Birth Rate (CBR) from Intrinsie Birth Rate the following relationship was utilized:
$\frac{\int_{G}^{f} P(x) f(x)}{\int_{G} P(x)} \cdot \frac{\int_{S} P(x)}{\int_{S} P(x) f(x)}$
where

```
P(x) = Population in age grctp
f(x)= Age specific fextility rate
    b = Intrinsic birth rate
```

G and $\mathbb{S}=$ Denote the given and stable population.

Since actuàl age specific fertility rates for the given and stable populations are not usually available, relative age specific fertility rate derived by the United Nation for age groups, 15-19 to 40-44 were utilized for deriving the weighted. sums.

As pointed out above, conversion of Child Woman Ratios (CWR) to levels of fertility can only be achieved at a certain level of
mortality. As such the first task was to determine the level of mortality in Pakistan around the perjod 1972 to 1981. Abridged Life Tables were constructed for the male and famale population of Pakistan based on PGS data for the years 1976, 1977 and 1978. The mortality data was adjusted for possible underenumexation in the adult age groups, whereas to avoid under enumeration in young age groups mortality levels for the 1975 pFS survey were employed. The average e_{0}^{0} from both sexes from this exercise turned out to be 54 years. The second task was to examine the age structure of children fox the district populations. Children in age group (om4) were observed to be under enmerated: This under enumeration was adjusted by applying Pressat's Technique for the mortality level of $54 e_{0}^{0} / 25 /$.

The conversion of Chila women Ratios $C(0-4)$ and $C(5-9)$ to Gross Reproduction Rate (GRR) were achieved by the application of regression beta coefficients obtained through linear interpolation. The conversion of Child Woman Ratio (CWR) to Intrinsio Birth Rate was similaxly achieved through the application of regression heta coefficients obtained through linear interpolation. In order to arrive at the measure of Crude Birth Rates (CBRs), Tidrinsio Birth Rates were subjected to multiplication through the two measures described earlier. The measures were dexived through the application of xelative age-specific fertility rates to female population.

1. Becker, Gary S. "An Economic Analysis of Fertility" Demographic" and Economic Change in Developed Countries, National Bureau in Universities, Princeton, Princeton University Press, 1960.
2. Becker, Gary S and H, Gregg Lewis, "On the Interaction Between the Quantity and Quality of Children", Journal of Political Economy,Vol.81, No.2, Part-22, 1973.
3. Census Organization, "Population Census of Pakistan", Ministry of Interior, states and Frontier Regions, Islamabad, 1972.
4. Census Organization, "Agricultural Census of Dakistan", Ministry of Interior, States and Frontier Regions, Islamabad, 1972.
5. Coale, Ansley J. "The Demographia Transition", paper for IUSSP Meeting in Leige, Vol.1, 1973.
6. DeTray, Denmis N., "tho Demand for Children in'a.'Natural Fextility' Population", The Pakistan Development Review Vol. XVIII, No.l, 1979.
7. Draper, Norman and Harry Smith, "Applied Regression Analysis, Second Edition". John Wiley and Sons, New York, 1981.
8. Duncan, Ottis Dudley, "Path Analysis: Sociological Examples", The American Journal of Sociology, Vol. 72, No. 1, 1966.
9. Easterlin, Richard A. et. al. "The Economics and Sociology of Fertility: A Synthesis", University of Pennsylvania, 1973. (Mimeographed).
10. Farooqui, M. Naseem Iqbal and Ghulam Yasin Soomro, "Analysis of rertility Change in Pakistai.' Paper Presented at Pakistan Society of Development Economists, 1984.
11. Government of Pakistan. "The Third Five Year Plan 1965-70", 1965.
1.2. Hanenbexg, Robert, "Estimation of Total Fertility Rate Based on Child-Woman Ratio", Asian and Pacific Census Forum, Vol. 10, No. 2, East-West Population Institute, 1983.
12. Hermalin, Albert I. "Regression Analysis of Areal Data in Chandrasekaran and Albert I. Hexmalin Hds. Measuring the Effect of Family Planning Programmes on Fertility, IUSSP, 1975.
13. "Karim, Mehtab S. "Differentials in Age at Marriage" in Alam, Iqbal and Betzy Dinesen Eds. Fertility in Pakistan. R Review of Finding fron the Pakistan Fertility Survey. Voorberg, Netherlands: International Statistical Institute, 1984.
14. Kitagawa, Evelyn M. "Standardized Comparisons in Population Research", Eqmography Vol.1, No.1, 1964.
15. Kendal, Maurice, "Multivariate Analysis" Charles Griffin \& Co. London, 1975.
16. Ministry of Education, "Pakistan Education Statistics: 1947-48 to 1972-73" Buceau of Education Planing and Management and Central Bureau of Educations, Islamabad, n. α.
17. Nizamuddin, M. "Community and Programe Variables and Their Effects on Fertility Related Bchaviour of Rural Pakisetani Women" in Alam, Iqbal and Betzy Dineson Eds, Fertility in Pakistan: A Review of Eindings From the Fakistan Fertility Survey. Voorberg, Netherlands: International Statistical. Institute, 1984.
18. Pasha, Hafiz A, and Tariq Hassain, "Development Ranking of Districts in Pakistan" Pakistan Journal of Applied Economics, Vol.1, No.2, AERC, Karachi, 1982.
19. PopuLation Census Organization "1981 District Census Reports" (for 39 districts), Statistics Division, Government of Pakistan, Islamabad, 1983.
20. Population Division "Report on the Working Pakistan's Family Planning Programme 1973-74", Government of Pakistan, Islamabad, n.d.
21. Rele, J.R. "Fertility Analysis Through Extension of Stable Population Concepts" Population Monograph Series No. 2 University of California, Berkely, 1967.
22. Stoeckel, John. "An Overview of Methodological Issues in Fertility and Development Research", Paper Presented at the Seminar on Regional Fertility and Development in Thailand, 1979.
23. Srinivasan, K. "An Overview of Multivariate rechniques in the Analysis of Survey Data". Paper presented at Regional. Workshop on Techniques of Analysis of world Fertility Survey. Data, ESCAP, Bangkok, 1979.
24. United Nations. "The Concept of a Stable Population: Application to the Study of Populations of Countries with Incomplete Demographic Statistics" Department of Economic and Social Affairs Population Studies, No. 39, 1968.
25. Williams, Ann D. "Effects of Economic Development on Fertility: Review and. Evaluation of the Literature", Center for Advanced Studies, Santa Barbara, California, 1974.

This work is licensed under a Creative Commons
Attribution - Noncommercial - NoDerivs 3.0 Licence.

To view a copy of the licence please see: http://creativecommons.org/licenses/by-nc-nd/3.0/

[^0]: ++ Path Coefficients significant at 1 to 5 percent level.

 + Path coefficients significant at 10 percent level.

